
Scalability and 
Availability

Ryan Eberhardt and Julio Ballista

May 20, 2021



Logistics

● Week 8 exercises are due on Tuesday

● Project 2 coming out today, due on the last day of class


○ This is the last assignment! You’re in the home stretch!

● Let us know how we can help!



Reflections

● Really nice! I find it interesting how you can almost use Rust's error messages as guardrails to bump around 
and hopefully lead to a correct solution. Obviously this doesn't work in all cases (deadlock), but it's pretty 
effective :) 

● I feel like while I understand some of the basic syntax/writing of rust, I don't think I know enough to start a 
rust project myself from scratch 
○ You might surprise yourself! cargo new projectname will create a new project, and then you can add 

dependencies in Cargo.toml. That’s about it!

● Project 1 was fun! I was very disappointed at how hacky debuggers are on the inside. 

○ Welcome to systems :)

● On the subject of multithreading, I can see how rust is helpful, but at least for me, deadlock from bad logic is 

usually what got me as opposed to data races, but I assume that ensuring that no deadlock occurs is 
something like the halting problem. 
○ Data races are extremely prevalent and hard to avoid in complicated codebases, so this was a major 

design goal for Rust

○ It’s also possible to build languages that give guarantees about deadlock. Extremely relevant for writing 

smart contracts (e.g. Ethereum), see Oxide as an example

https://stanford-cs242.github.io/f18/lectures/07-1-sergio.html


This week

● Moving up a level of abstraction: Discussing safety in the context of systems 
design


● Today: How do you keep big systems running?

● Tuesday: How do you keep information secure from attackers?

● This could be an entire class. We will just skim the surface and talk about the 

parts we feel are most important to understand

○ How do you keep big systems running? Take CS 144/244, 245, 244B

○ How do you keep information secure? Take CS 155, 356, 255



Networking in a Nutshell



IP addresses

● Every computer on a network has an “IP address” uniquely identifying it on the 
network

○ An IPv4 address is 4 bytes. Usually written as 4 numbers, 0-255, separated by 

periods (e.g 192.168.1.230)

● If you want to talk to a computer, you need to know its IP address

● How do you find the IP address? (Too hard to remember!)


○ Your computer is configured with the address of a DNS server (can be hardcoded)

○ When you want to reach “www.google.com,” ask the DNS server for the IP address

○ IP address of www.google.com: 
🍌 dig +noall +answer www.google.com  

www.google.com. 204 IN A 216.58.194.16



DNS resolution

Hi 8.8.8.8, what’s the IP address for www.google.com?

www.google.com is at 216.58.194.16!

8.8.8.810.0.4.110

216.58.194.16

Hi 216.58.194.16, can you give me the www.google.com home page?

Here you go!



Understanding port numbers



“Host” (computer) = apartment complex



“Host” (computer) = apartment complex



“Host” (computer) = apartment complex
“IP address” = apartment complex address



171.67.215.200 10.0.4.128

“Host” (computer) = apartment complex
“IP address” = apartment complex address



171.67.215.200 10.0.4.128

“Host” (computer) = apartment complex
“IP address” = apartment complex address

“Port number” = apartment number



171.67.215.200 10.0.4.128

“Host” (computer) = apartment complex
“IP address” = apartment complex address

“Port number” = apartment number

… … …… 8022 443 … … …… 8022 443

Want to go to http://web.stanford.edu?
Use DNS to find web.stanford.edu's IP address: 171.67.215.200 

Go to that apartment complex 
Knock on the apartment that runs the HTTP service (port 80)



171.67.215.200 10.0.4.128

“Host” (computer) = apartment complex
“IP address” = apartment complex address

“Port number” = apartment number

… … …… 8022 443 … … …… 8022 443

Want to SSH into myth.stanford.edu?
Use DNS to find myth.stanford.edu's IP address: 171.64.15.29 

Go to that apartment complex 
Knock on the apartment that runs the SSH service (port 22)



Starting a server



… … …… 8022 443

171.67.215.200

Apartment complex = host



… … …… 8022 443

171.67.215.200

Apartment complex = host
Each host will have some processes running on it



Each host will have some processes running on it

… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

171.67.215.200



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

“Binding” to a port:

171.67.215.200



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

“Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment)

171.67.215.200



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

“Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment)

171.67.215.200



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

“Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment) 

Process installs a “waiting list” outside the apartment

171.67.215.200



… … …… 80 443

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

“Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment) 

Process installs a “waiting list” outside the apartment

22

171.67.215.200



… … …… 80 443

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

“Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment) 

Process installs a “waiting list” outside the apartment 
Waiting list is attached to a file descriptor, so the process can see when someone arrives

22

171.67.215.200



… … …… 80 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

“Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment) 

Process installs a “waiting list” outside the apartment 
Waiting list is attached to a file descriptor, so the process can see when someone arrives

22

171.67.215.200



… … …… 80 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

“Binding” to a port:
Other processes can bind to other ports 

(no two processes can bind to the same port — one application per apartment!)

22

171.67.215.200



… … …… 80 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

“Binding” to a port:
Other processes can bind to other ports 

(no two processes can bind to the same port — one application per apartment!)

22

…

pid 2345

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

171.67.215.200



… … …… 80 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

“Binding” to a port:
A process can bind to multiple ports, if it desires

22

…

pid 2345

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

171.67.215.200



… … …… 80 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

“Binding” to a port:
A process can bind to multiple ports, if it desires

22

…

pid 2345

FD table

OF table

Vnode table

R/W R/W R/W …

terminal …socket socket

171.67.215.200



Connecting a client



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

Say we have a server bound on 171.67.215.200:80

171.67.215.200



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

On some other computer, we want to talk to that server

171.67.215.200

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

10.0.4.110

Garage/ 
outgoing ports



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

The “client” walks out to try to find 171.67.215.200:80

171.67.215.200

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

10.0.4.110

Garage/ 
outgoing ports



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

If successful, it adds itself to the waiting list

171.67.215.200

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

10.0.4.110

Garage/ 
outgoing ports



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

The server sees the client through its waiting list file descriptor

171.67.215.200

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

10.0.4.110

Garage/ 
outgoing ports



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W …

terminal …socket

It takes the client off the waiting list and creates a new bidirectional 
“socket” that it can use to talk directly with the client

171.67.215.200

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

10.0.4.110

Garage/ 
outgoing ports



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W R/W …

terminal …socket socket

It takes the client off the waiting list and creates a new bidirectional 
“socket” that it can use to talk directly with the client

171.67.215.200

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

10.0.4.110

Garage/ 
outgoing ports



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W R/W …

terminal …socket socket

Successful in making a connection, the client also creates a new file 
descriptor it can use to talk to the server

171.67.215.200

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

10.0.4.110

Garage/ 
outgoing ports

R/W

socket



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W R/W …

terminal …socket socket

If the client writes to its fd 3, it will be readable on the server’s fd 4

171.67.215.200

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

10.0.4.110

Garage/ 
outgoing ports

R/W

socket

hello!



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W R/W …

terminal …socket socket

Similarly, if the server writes to fd 4, it will be readable on the client’s fd 3

171.67.215.200

…

pid 1234

FD table

OF table

Vnode table

R/W …

terminal …

10.0.4.110

Garage/ 
outgoing ports

R/W

socket

hi!



… … …… 8022 443

…

pid 1234

FD table

OF table

Vnode table

R/W R/W R/W …

terminal …socket socket

The server can talk to multiple clients at the same time, using separate file 
descriptors (often using a thread facilitate each conversation over each fd)

171.67.215.200

…
pid 1234

FD 
table

OF 
table

Vnode 
table

R/
W …

termin
al …

10.0.4.110

Garage/ 
outgoing 

ports

R/
W

socket

R/W 

…
pid 1234

FD 
table

OF 
table

Vnode 
table

R/
W …

termin
al …

10.0.4.120

Garage/ 
outgoing 

ports

R/
W

socket

socket 

👀
thread 1

👀
thread 2



Scalability and Availability



Properties of networked systems

● Scalability: How well can the system grow as demands increase over time?

○ An unscalable system will not be able to grow to meet demand no matter 

how much resources you throw at it

● Availability: How well is the system able to stay available and avoid 

downtime?

○ Becomes increasingly challenging as a system scales

○ If an server is available 99.99% of the time (down only 0.88 hours/year), a 

system not engineered for fault tolerance relying on 1,000 servers will be 
available 99.99% ^ 1000 = 90.48% of the time (down 834 hours/year)


● (There are many more properties we will not talk about today)



Simple server setup

● Client looks up server’s IP address using DNS

● Client connects to server’s IP over the network

● Client and server each create a file descriptor for communication with each 

other

Client Internet

171.67.215.20010.0.4.110

Server



Simple server setup

● Is it scalable?

● Individual computers aren’t scalable


○ Becomes exponentially more expensive as you try to upgrade performance

○ Much cheaper if we could use two machines with commodity performance 

than one machine with 2x performance

○ Internet traffic has grown far faster than hardware has increased in power. 

Hardware can’t keep up even if our wallets could

● Scale out, not up!

Client Internet

171.67.215.20010.0.4.110

Server



Simple server setup

● Is it available?

● Hardly.


○ Server could get overloaded and run out of resources (memory, CPU time, 
file descriptors, etc)


○ Server could fail (system crashes, hardware fails, dog eats power cable, 
network outage, etc)

Client Internet

171.67.215.20010.0.4.110

Server



Distributed systems

● We want to distribute a system’s functionality over a large number of servers 
to achieve scalability and availability


● These servers talk to each other using networking to collaborate on whatever 
problem we are trying to solve



Scaling out

Client Internet

171.67.215.20010.0.4.110

Server

How can we design our system to make use of multiple servers?



Scaling out

Client Internet

171.67.215.200

10.0.4.110 Server

Server

How can we design our system to make use of multiple servers?



Scaling out

Client Internet

171.67.215.200

10.0.4.110

Simply duplicating our current setup won’t work.

Server

Server



Scaling out

Client Internet

171.67.215.200

10.0.4.110

Logic/compute

Persistent data 
storage

Logic/compute

Persistent data 
storage

Simply duplicating our current setup won’t work.
The duplicate servers would need to synchronize their data storage.


This is a very hard problem that is already solved by databases!



Scaling out

Client Internet

171.67.215.200

10.0.4.110 Logic/compute

Simply duplicating our current setup won’t work.
The duplicate servers would need to synchronize their data storage.


This is a very hard problem that is already solved by databases!

172.16.12.50

MySQL, Postgres, 
Redis, MongoDB, 

etc.

Logic/compute

Persistent data 
storage



Scaling out

Client Internet

171.67.215.200

10.0.4.110 Logic/compute

These database systems come with mechanisms to scale to multiple servers 
for reliability and performance

172.16.12.50

MySQL, Postgres, 
Redis, MongoDB, 

etc.

Logic/compute

Persistent data 
storage



Scaling out

Client Internet

171.67.215.200

10.0.4.110 Logic/compute

MySQL, Postgres, 
Redis, MongoDB, 

etc.

Logic/compute

172.16.12.50

Persistent data 
storage

172.16.12.51

Persistent data 
storage

172.16.12.50

Persistent data 
storage

These database systems come with mechanisms to scale to multiple servers 
for reliability and performance

Take CS 245, CS 244B!



Scaling out

Client Internet

171.67.215.200

10.0.4.110 Logic/compute

Still have a problem: Multiple servers, but only one IP!

MySQL, Postgres, 
Redis, MongoDB, 

etc.

Logic/compute

172.16.12.50

Persistent data 
storage

172.16.12.51

Persistent data 
storage

172.16.12.50

Persistent data 
storage



Scaling out

Client Internet

171.67.215.200

10.0.4.110 Logic/compute

Load balancers: Distribute traffic across compute nodes

MySQL, Postgres, 
Redis, MongoDB, 

etc.

Logic/compute

172.16.12.50

Persistent data 
storage

172.16.12.51

Persistent data 
storage

172.16.12.50

Persistent data 
storage



Scaling out

Client Internet

171.67.215.20010.0.4.110 Logic/compute

Load balancers: Distribute traffic across compute nodes

MySQL, Postgres, 
Redis, MongoDB, 

etc.

Logic/compute

172.16.12.50

Persistent data 
storage

172.16.12.51

Persistent data 
storage

172.16.12.50

Persistent data 
storage

172.17.1.100

172.17.1.101
Load 

balancer

Private datacenter networkPublic internet



Load balancers

Client Internet

171.67.215.20010.0.4.110 Logic/compute

Logic/compute

172.16.12.50

Persistent data 
storage

172.16.12.51

Persistent data 
storage

172.16.12.50

Persistent data 
storage

172.17.1.100

172.17.1.101
Load 

balancer

Private datacenter networkPublic internet

● When a client opens a connection to the load balancer, it selects a compute node and opens a 
connection to that compute node

○ Any traffic the client sends is relayed to the compute node. Any traffic the compute node sends 

is proxied back to the client

○ There are a variety of strategies for selecting the compute node (e.g. random selection, picking 

the one with the lowest load, round-robin, etc)

● The load balancer doesn’t do anything else; anything resource-intensive is offloaded to the compute 

nodes. Consequently, load balancers can handle a large number of concurrent connections

hello!

Logic/compute

172.17.1.100

hi there!

hello!hi there!



Load balancers

Client Internet

171.67.215.20010.0.4.110 Logic/compute

Logic/compute

172.16.12.50

Persistent data 
storage

172.16.12.51

Persistent data 
storage

172.16.12.50

Persistent data 
storage

172.17.1.100

172.17.1.101
Load 

balancer

Private datacenter networkPublic internet

● Scalability: If many clients are connecting, we can add more compute nodes



Load balancers

Client Internet

171.67.215.20010.0.4.110
Logic/compute

Logic/compute

172.16.12.50

Persistent data 
storage

172.16.12.51

Persistent data 
storage

172.16.12.50

Persistent data 
storage

172.17.1.100

172.17.1.101
Load 

balancer

Private datacenter networkPublic internet

● Scalability: If many clients are connecting, we can add more compute nodes

Logic/compute

172.17.1.102

● Availability: If one of the compute nodes fails, load balancer will detect that it 
isn’t able to contact that server, and it can stop relaying traffic there


● Client never needs to know that our infrastructure is changing!

● Can we stop here?



Load balance your load balancers!



Load balance your load balancers!

● Systems carrying large amounts of traffic can’t rely on a single load balancer

○ YouTube currently accounts for 15% of all internet traffic (source)

○ There’s no way a single machine can handle that much traffic passing 

through it

● A lone load balancer introduces a single point of failure


○ Hardware failures are uncommon, but they do happen

○ Entire-datacenter failures are uncommon, but they do happen

○ Murphy’s Law of large-scale systems: anything that can go wrong will go 

wrong! If you need high availability, you have to be prepared for the worst

https://www.sandvine.com/phenomena


Possible solution: Round-robin DNS

● DNS can return multiple IP addresses for a given hostname, shuffling the order

● Clients will pick the first one, moving down the list if IPs are unreachable

● You can specify multiple load balancers in this list, potentially in different datacenters

● 🍌 dig +noall +answer reddit.com  

reddit.com. 147 IN A 151.101.193.140  
reddit.com. 147 IN A 151.101.129.140  
reddit.com. 147 IN A 151.101.65.140  
reddit.com. 147 IN A 151.101.1.140

● Second time: 
🍌 dig +noall +answer reddit.com  
reddit.com. 339 IN A 151.101.1.140  
reddit.com. 339 IN A 151.101.129.140  
reddit.com. 339 IN A 151.101.193.140  
reddit.com. 339 IN A 151.101.65.140



Downsides of DNS load balancing

● Not very intelligent: can’t take into account whether some servers are more 
overloaded than others


● DNS infrastructure has a lot of caching. It’s hard to consistently rotate the 
order of IPs if your DNS responses get cached

○ Leads to uneven distribution of load


● If one of the servers fails, DNS will happily continue announcing its IP address

○ Clients will eventually try one of the other IP addresses when they realize 

the dead server is dead, but this can significantly increase latency to 
establish a connection



Huge sites, one IP?

● 🍌 dig +noall +answer www.google.com  
www.google.com. 69 IN A 216.58.217.196

● 🍌 dig +noall +answer www.facebook.com  
www.facebook.com. 4314 IN CNAME star-mini.c10r.facebook.com.  
star-mini.c10r.facebook.com. 32 IN A 31.13.70.36

● What’s going on?



Geographic routing with DNS



Geographic routing with DNS

● DNS servers can 
respond with the IP for 
the load balancer that 
is closest to the client


● Reduces connection 
latency and helps to 
distribute traffic


● Doesn’t fix availability… 
If local datacenter goes 
down, want to fail over 
to other datacenters



IP Anycast
● Though we don’t usually think like this, it’s possible for a single IP address to correspond to 

multiple computers

● Multiple datacenters can announce to the internet that they “own” a particular IP

SFO load 
balancer

Logic/compute
Logic/compute
Logic/compute
Logic/compute

Note: a datacenter will almost always have multiple load balancers to distribute load and provide availability.

171.67.215.200

NYC load 
balancer

Logic/compute
Logic/compute
Logic/compute
Logic/compute

171.67.215.200Client

10.0.4.110



IP Anycast
● Though we don’t usually think like this, it’s possible for a single IP address to correspond to 

multiple computers

● Multiple datacenters can announce to the internet that they “own” a particular IP

SFO load 
balancer

Logic/compute
Logic/compute
Logic/compute
Logic/compute

171.67.215.200

NYC load 
balancer

Logic/compute
Logic/compute
Logic/compute
Logic/compute

171.67.215.200

Stanford 
router

SFO 
router

NYC 
router

“Yo
u c

an
 re

ac
h 

17
1.6

7.2
15

.20
0 t

hro
ug

h 

me a
t a

 co
st 

of 
10

!”

“You can reach 
171.67.215.200 through 

me at a cost of 100!”

Client

10.0.4.110

Routing table:
171.67.215.200 -> SFO router (10) 
171.67.215.200 -> NYC router (100)



IP Anycast

SFO load 
balancer

Logic/compute
Logic/compute
Logic/compute
Logic/compute

171.67.215.200

NYC load 
balancer

Logic/compute
Logic/compute
Logic/compute
Logic/compute

171.67.215.200

Stanford 
router

SFO 
router

NYC 
router

Client

10.0.4.110

Routing table:
171.67.215.200 -> SFO router (10) 
171.67.215.200 -> NYC router (100)

● Though we don’t usually think like this, it’s possible for a single IP address to correspond to 
multiple computers


● Multiple datacenters can announce to the internet that they “own” a particular IP

● When a client tries to connect to an IP, they’ll use the datacenter that is closest to them

Destination: 171.67.215.200

● If one of the datacenters goes down, the internet will notice and reroute traffic



IP Anycast

SFO load 
balancer

Logic/compute
Logic/compute
Logic/compute
Logic/compute

171.67.215.200

NYC load 
balancer

Logic/compute
Logic/compute
Logic/compute
Logic/compute

171.67.215.200

Stanford 
router

SFO 
router

NYC 
router

Client

10.0.4.110

Routing table:
171.67.215.200 -> SFO router (10) 
171.67.215.200 -> NYC router (100)

Destination: 171.67.215.200

● Though we don’t usually think like this, it’s possible for a single IP address to correspond to 
multiple computers


● Multiple datacenters can announce to the internet that they “own” a particular IP

● When a client tries to connect to an IP, they’ll use the datacenter that is closest to them
● If one of the datacenters goes down, the internet will notice and reroute traffic



Engineer for failure



Chaos engineering

● To design reliable networked systems, you must assume any part of the 
system can fail


● But in a complex system, it’s hard to predict all failure modes

● Hard to learn how a system will fail until it fails

● Solution? Intentionally induce failure!


○ (in a controlled environment, where we can fix problems quickly, instead of 
having unexpected disasters at 3am)


● Netflix philosophy of Chaos Engineering: “the discipline of experimenting on a 
system in order to build confidence in the system’s capability to withstand 
turbulent conditions in production.”

http://principlesofchaos.org/


Netflix Simian Army

● Chaos Monkey

○ Original tool, intended to simulate a thought 

experiment: If you were to give a monkey a wrench 
and let it loose in a datacenter, what would happen?


○ Randomly terminates servers in production, 
exposing engineers to frequent failures and 
incentivizing fault-tolerant design


● Chaos Gorilla: Randomly terminates an entire datacenter

● Chaos Kong: Randomly terminates an entire geographic 

region 
● Others: Latency Monkey, Doctor Monkey, Janitor 

Monkey, Conformity Monkey, etc.



More reading

● https://blog.codinghorror.com/working-with-the-chaos-monkey/

○ “Raise your hand if where you work, someone deployed a daemon or 

service that randomly kills servers and processes in your server farm. Now 
raise your other hand if that person is still employed by your company.  
 
Who in their right mind would willingly choose to work with a Chaos 
Monkey?”


● https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116

● http://principlesofchaos.org/

https://blog.codinghorror.com/working-with-the-chaos-monkey/
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
http://principlesofchaos.org/

