
Object Oriented
Programming in Rust

Ryan Eberhardt and Julio Ballista

April 22, 2021

Logistics

● Week 3 exercises due today at 11:59 PST.

○ Please let us know if you get stuck / feel confused! We want you to sleep!

● Using myth? See announcements channel

● Participation incentive: At the end of the quarter, I’ll randomly select at least 3

people that participated 10 times throughout the quarter, and I’ll make you a
custom mug or pot (see @pottedpeasceramics)

○ Asking or answering a question in lecture (out loud, or in the chat) or on

Slack all count as participation

● Today: How can we write good code in Rust?

https://www.instagram.com/pottedpeasceramics/

Object Oriented Programming in C++

Classes

● "Object" Oriented: Create an 'object' - movie database, and you can
performs methods on this object.

● You can create instances of objects, and each would have their own set of
variables. (Movie database with different files)

● Classes divided into public and private regions.

● public members can be accessible to anyone with reference to an instance

● private members only accessible to the implementer of the class

class imdb {
public:

imdb(const std::string& directory)
bool getCredits(...)

private:
/* Elements
const char* kActorFileName;

}

What are some advantages to
Classes?

Advantages to Class Design

● Code-Reuse: Want an object to be different based on the file it takes in? Add
one parameter to its constructor, and suddenly you have two different
implementations, but just one class!

● Code-Hiding: Don't need to expose parts of a class not needed for a user to
interact with it. Could lead to misuse, and add too much overhead to
contribute to a project.

Code-Reuse

class TeddyBear {
public:

TeddyBear(..);
void roar_sound();

}

class PurpleTeddyBear {
public:

TeddyBear(..);
void roar_sound();
void purple_button_song();

}

class RedTeddyBear {
public:

TeddyBear(..);
void roar_sound();
void red_button_song();

}

class PurpleTeddyBear {
public:

TeddyBear(..);
void roar_sound();
void green_button_song();

}

We still have to repeat a bunch of code!

Inheritance

class TeddyBear {
public:

TeddyBear(..);
void roar_sound();

}

class RedTeddyBear {
public:

red_button_song();
}

class PurpleTeddyBear {
public:

purple_button_song();
}

class GreenTeddyBear {
public:

green_teddy_bear();
}

Lets take a look!

https://cplayground.com/?p=cobra-panther-lyrebird

Inheritance

● With Inheritance, we were able to use the same implementation of one
method across many different kinds of objects, brought together through a
parent-child relationship.

● Child subclasses inherit all methods and attributes. (constructors usually
don't count here, depending on the language). They can choose to override
parent functions (green bear roaring differently)

● Big concept in languages like Java (where everything inherits one base
Object class)

What might be the weaknesses of
Inheritance?

Inheritance Trees

A Change in DisplayObject could break
implementations for the entire tree!

Questions?

Traits

How else can we decompose?

struct RedTeddyBear;

impl RedTeddyBear {
fn roar(&self) {

println!("ROAR!!");
}
fn red_button_song(&self){

/* Red Song */
}

}

struct TeddyBear;

impl TeddyBear {
fn roar(&self) {

println!("ROAR!!");
}

}

struct PurpleTeddyBear;

impl PurpleTeddyBear {
fn roar(&self) {

println!("ROAR!!");
}
fn purple_button_song(&self){

/* Purple Song */
}

}

struct GreenTeddyBear;

impl GreenTeddyBear {
fn roar(&self) {

println!("ROAR!!");
}
fn green_button_song(&self){

/* Green Song */
}

}

https://play.rust-lang.org/?
version=stable&mode=debug&edition
=2018&gist=da8b2ac99e2c386656cb10
3c277a014e

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=da8b2ac99e2c386656cb103c277a014e
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=da8b2ac99e2c386656cb103c277a014e
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=da8b2ac99e2c386656cb103c277a014e

Traits

RO
AR

Inject the code you want into the other classes! (Inject a
trait into them!)

Let's make our first trait!

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=924a5adcbd9f4ebc5437897334e4b521

Traits Overview

● With traits, you write code that can be injected into any existing structure.
(From TeddyBear to i32!) This code can have reference to self, so the code
can be dependent on the instance

● Trait methods do not need to be fully defined - you could define a function
that must be implemented when implementing a trait for a type. (Similar to
Java interfaces)

● No more deep inheritance hierarchies. Just think: "Does this type implement
this trait?"

● Traits can specify functions instances should have, instead of just getting
many from another "parent".

Advantages to Traits

● Code-Reuse: Want an object to be different based on the file it takes in?
Create a Trait that has a parameterized function, and inject it to all objects!

● Code-Hiding: All parts of a trait are exposed, but because you specify which
members / functions should be injected, there is no accidental spillover that
inheritance structures can have!

Questions?

Big Standard Rust Traits

Traits to Know

● Copy: Will create a new copy of an instance, instead of moving ownership when using
assignment (=)

● Clone: Will return a new copy of an instance when calling the .clone() function on the method.

● Drop: Will define a way to free the memory of an instance - called when the instance reaches

the end of the scope.

● Display: Defines a way to format a type, and show it (used by println!)

● Debug: Similar to Display, though not meant to be user facing (Meant for you to debug your

types!)

● Eq: Defines a way to determine equality (defined by an equivalence relation) for two objects of

the same type.

● PartialEq: Defines a way to determine equality (defined by a partial equivalence relation) - f32!

Lets implement a standard Trait!

Does not compile - clone() isn't defined
Clo
ne

Let's Inject Clone!

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=461ce49daeae793b33604a1095ee208d

Injecting Clone

● You can implement any traits into any structure (as we did with Clone to
Point), so long as they are compatible (Drop is not compatible with Copy)

● You can use the Rust Documentation as a way to tell you which functions
need to be implemented, along with their parameter types.

● You can use #[derive(x,y,z..)] to derive traits. The Rust compiler will try to
implement the traits for you, if your structure satisfies some rules (given by
the documentation). IE: You can derive Clone if all members in the struct
already implement Clone.

https://doc.rust-lang.org/std/clone/trait.Clone.html

Next Time [End]

● How can we write code that can accept many types?

● How can traits play a role in this?

