
Error Handling

Ryan Eberhardt and Julio Ballista

April 13, 2021

Logistics

● Congrats on making it to week 3! 🎉

○ Already 1/3 through the quarter!

● Please submit Github usernames ASAP

○ May also want to accept the Github invite even if you aren’t starting the assignment right

away

● Week 2 exercises due Thursday

○ Let us know if you need more time

○ Blog posts welcome

● Ownership code examples on the website (see lecture notes)

● Please submit reflections 📝

○ Also would love to hear if this is not so helpful, or if we could make this more helpful to
you

Error handling

More Remote Code Execution

● Imagine a server receives messages from the network

● Message is variable length. A header at the start of the message specifies

where data is located within the message payload

field1 offsetlength

64 32 48

field2 offset field3 offset

56 field3field1 field2

Header Payload

More Remote Code Execution
field1 offsetlength

64 32 48

field2 offset field3 offset

56 field3field1 field2

Header Payload

struct message {
 size_t length;
 size_t field1_offset;
 size_t field2_offset;
 size_t field3_offset;
 char payload[];
}

// Processing part of a received message:
void *local_copy = malloc(message->length);
// Validate field1_offset is within the buffer (no buffer overflows!)
assert(message->field1_offset + FIELD_1_LENGTH <= message->length);
// Copy the field and process it
memcpy(local_copy + message->field1_offset,
 message->payload + message->field1_offset,
 FIELD_1_LENGTH);
process_field_1(local_copy + message->field1_offset);

Two issues

● Lack of proper error handling

● Use of NULL in place of a real value

Handling errors

Error handling in C

● If a function might encounter an error, its return type is made to be int (or
sometimes void*).

● If the function is successful, it returns 0. Otherwise, if an error is encountered,
it returns -1. (If the function is returning a pointer, it returns a valid pointer in
the success case, or NULL if an error occurs.)

● The function that encountered the error sets the global variable errno to be
an integer indicating what went wrong. If the caller sees that the function
returned -1 or NULL, it can check errno to see what error was encountered

#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* I/O error */
#define ENXIO 6 /* No such device or address */
#define E2BIG 7 /* Arg list too long */
#define ENOEXEC 8 /* Exec format error */
#define EBADF 9 /* Bad file number */
#define ECHILD 10 /* No child processes */
#define EAGAIN 11 /* Try again */
#define ENOMEM 12 /* Out of memory */
#define EACCES 13 /* Permission denied */
#define EFAULT 14 /* Bad address */
#define ENOTBLK 15 /* Block device required */
#define EBUSY 16 /* Device or resource busy */
#define EEXIST 17 /* File exists */
#define EXDEV 18 /* Cross-device link */
#define ENODEV 19 /* No such device */
#define ENOTDIR 20 /* Not a directory */
#define EISDIR 21 /* Is a directory */
#define EINVAL 22 /* Invalid argument */
#define ENFILE 23 /* File table overflow */
#define EMFILE 24 /* Too many open files */
#define ENOTTY 25 /* Not a typewriter */
#define ETXTBSY 26 /* Text file busy */
#define EFBIG 27 /* File too large */
#define ENOSPC 28 /* No space left on device */
#define ESPIPE 29 /* Illegal seek */
#define EROFS 30 /* Read-only file system */
#define EMLINK 31 /* Too many links */
#define EPIPE 32 /* Broken pipe */
#define EDOM 33 /* Math argument out of domain of func */
#define ERANGE 34 /* Math result not representable */
#define EDEADLK 35 /* Resource deadlock would occur */
#define ENAMETOOLONG 36 /* File name too long */
#define ENOLCK 37 /* No record locks available */
#define ENOSYS 38 /* Function not implemented */
#define ENOTEMPTY 39 /* Directory not empty */
#define ELOOP 40 /* Too many symbolic links encountered */
#define EWOULDBLOCK EAGAIN /* Operation would block */
#define ENOMSG 42 /* No message of desired type */
#define EIDRM 43 /* Identifier removed */
#define ECHRNG 44 /* Channel number out of range */
#define EL2NSYNC 45 /* Level 2 not synchronized */
#define EL3HLT 46 /* Level 3 halted */
#define EL3RST 47 /* Level 3 reset */
#define ELNRNG 48 /* Link number out of range */
#define EUNATCH 49 /* Protocol driver not attached */

#define EL2HLT 51 /* Level 2 halted */
#define EBADE 52 /* Invalid exchange */
#define EBADR 53 /* Invalid request descriptor */
#define EXFULL 54 /* Exchange full */
#define ENOANO 55 /* No anode */
#define EBADRQC 56 /* Invalid request code */
#define EBADSLT 57 /* Invalid slot */
#define EBFONT 59 /* Bad font file format */
#define ENOSTR 60 /* Device not a stream */
#define ENODATA 61 /* No data available */
#define ETIME 62 /* Timer expired */
#define ENOSR 63 /* Out of streams resources */
#define ENONET 64 /* Machine is not on the network */
#define ENOPKG 65 /* Package not installed */
#define EREMOTE 66 /* Object is remote */
#define ENOLINK 67 /* Link has been severed */
#define EADV 68 /* Advertise error */
#define ESRMNT 69 /* Srmount error */
#define ECOMM 70 /* Communication error on send */
#define EPROTO 71 /* Protocol error */
#define EMULTIHOP 72 /* Multihop attempted */
#define EDOTDOT 73 /* RFS specific error */
#define EBADMSG 74 /* Not a data message */
#define EOVERFLOW 75 /* Value too large for defined data type */
#define ENOTUNIQ 76 /* Name not unique on network */
#define EBADFD 77 /* File descriptor in bad state */
#define EREMCHG 78 /* Remote address changed */
#define ELIBACC 79 /* Can not access a needed shared library */
#define ELIBBAD 80 /* Accessing a corrupted shared library */
#define ELIBSCN 81 /* .lib section in a.out corrupted */
#define ELIBMAX 82 /* Attempting to link in too many shared libraries */
#define ELIBEXEC 83 /* Cannot exec a shared library directly */
#define EILSEQ 84 /* Illegal byte sequence */
#define ERESTART 85 /* Interrupted system call should be restarted */
#define ESTRPIPE 86 /* Streams pipe error */
#define EUSERS 87 /* Too many users */
#define ENOTSOCK 88 /* Socket operation on non-socket */
#define EDESTADDRREQ 89 /* Destination address required */
#define EMSGSIZE 90 /* Message too long */
#define EPROTOTYPE 91 /* Protocol wrong type for socket */
#define ENOPROTOOPT 92 /* Protocol not available */
#define EPROTONOSUPPORT 93 /* Protocol not supported */
#define ESOCKTNOSUPPORT 94 /* Socket type not supported */
#define EOPNOTSUPP 95 /* Operation not supported on transport endpoint */
#define EPFNOSUPPORT 96 /* Protocol family not supported */
#define EAFNOSUPPORT 97 /* Address family not supported by protocol */
#define EADDRINUSE 98 /* Address already in use */
#define EADDRNOTAVAIL 99 /* Cannot assign requested address */
...

Error handling in C

int main() julio:
struct apple_pie *make_pie() {
 get_apples();
 bake_ingredients();
}

ryan:
struct apple *get_apples()

Hey Julio, can you
bake a pie for my

party?

Sure thing!

Error handling in C

int main() julio:
struct apple_pie *make_pie() {
 get_apples();
 bake_ingredients();
}

ryan:
struct apple *get_apples()

Hey Julio, can you
bake a pie for my

party?

Hey Ryan, can
you get some apples

from the store?

Error handling in C

int main() julio:
struct apple_pie *make_pie() {
 get_apples();
 bake_ingredients();
}

ryan:
struct apple *get_apples()

Hey Julio, can you
bake a pie for my

party?

Hey Ryan, can
you get some apples

from the store?

EN
OG
OO
DA
PP
LE
S

Error handling in C

int main() julio:
struct apple_pie *make_pie() {
 get_apples();
 bake_ingredients();
}

ryan:
struct apple *get_apples()

Hey Julio, can you
bake a pie for my

party?

Hey Ryan, can
you get some apples

from the store?

Here you go!

EN
OG
OO
DA
PP
LE
S

Error handling in C

int main() julio:
struct apple_pie *make_pie() {
 get_apples();
 bake_ingredients();
}

ryan:
struct apple *get_apples()

Hey Julio, can you
bake a pie for my

party?

Hey Ryan, can
you get some apples

from the store?

Here you go!

EN
OG
OO
DA
PP
LE
S

🤮

Broken code from earlier

struct message {
 size_t length;
 size_t field1_offset;
 size_t field2_offset;
 size_t field3_offset;
 char payload[];
}

// Processing part of a received message:
void *local_copy = malloc(message->length);
// Validate field1_offset is within the buffer (no buffer overflows!)
assert(message->field1_offset + FIELD_1_LENGTH <= message->length);
// Copy the field and process it
memcpy(local_copy + message->field1_offset,
 message->payload + message->field1_offset,
 FIELD_1_LENGTH);
process_field_1(local_copy + message->field1_offset);

Missing error check! 💣

CVE-2015-8812

● Critical Linux kernel vulnerability: by sending a malformed network packet, a
remote attacker could execute arbitrary code in the kernel

● A set of kernel networking functions were returning -1 for error, 0 for success,
but also other values for “warnings”

○ Returned NET_XMIT_CN (defined to be 2) when congestion was detected

● Code calling these functions saw nonzero return code and assumed there
was a network error

● Freed memory that was still being used for the network. Use-after-free +
double free!

The fix

--- a/drivers/infiniband/hw/cxgb3/iwch_cm.c
+++ b/drivers/infiniband/hw/cxgb3/iwch_cm.c
@@ -149,7 +149,7 @@ static int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct
l2t_en
 error = l2t_send(tdev, skb, l2e);
 if (error < 0)
 kfree_skb(skb);
- return error;
+ return error < 0 ? error : 0;
 }

😰

Proper C error checking is ugly

● Programmer must remember whether the function they are calling might return an error

○ Places immense burden on the programmer to remember how each specific function works

● After every function call that might return an error, must check whether an error occurred and
handle it correctly

○ This isn’t good enough (why not?): 

void *buf = malloc();  
if (buf == NULL) {  
 perror("error allocating memory");  
}  
memcpy(buf + offset, src, size);

● Handling specific errors using errno can produce an error-prone mess of if statements

○ Sometimes function documentation does not even properly document what errors might be

returned

https://web.cs.ucdavis.edu/~rubio/includes/ghc11.pdf
https://web.cs.ucdavis.edu/~rubio/includes/ghc11.pdf

Error handling in most languages: Exceptions

int main() julio:
struct apple_pie *make_pie() {
 get_apples();
 bake_ingredients();
}

ryan:
struct apple *get_apples()

Hey Julio, can you
bake a pie for my

party?

Sure thing!

Error handling in most languages: Exceptions

int main() julio:
struct apple_pie *make_pie() {
 get_apples();
 bake_ingredients();
}

ryan:
struct apple *get_apples()

Hey Julio, can you
bake a pie for my

party?

Hey Ryan, can
you get some apples

from the store?

NoGoodApplesException:
couldn’t find any decent
apples at the store

Error handling in most languages: Exceptions

int main() julio:
struct apple_pie *make_pie() {
 get_apples();
 bake_ingredients();
}

ryan:
struct apple *get_apples()

Hey Julio, can you
bake a pie for my

party?

Hey Ryan, can
you get some apples

from the store?

NoGoodApplesException:
couldn’t find any decent
apples at the store

Error handling in most languages: Exceptions

int main() julio:
struct apple_pie *make_pie() {
 get_apples();
 bake_ingredients();
}

ryan:
struct apple *get_apples()

Hey Julio, can you
bake a pie for my

party?

Hey Ryan, can
you get some apples

from the store?

NoGoodApplesException:
couldn’t find any decent
apples at the store

💣

Massive improvements over C-style error handling

● You don’t have to write error propagation code every time you call a function
that might produce an error

○ Exceptions propagate up the stack automatically until they are handled by

a try/catch

● Errors will not go unnoticed

○ Worst case scenario, they’ll propagate up to main() and crash the program

○ Sounds bad, but a crash is much better than the program continuing to

run in an undefined state

Except Exceptions

● Why might exceptions not be so hot?

○ Failure modes become hard to reason about: any function can throw any

exception at any time

■ Code might fail because of an exception that was thrown by a totally

unrelated function twelve function calls away

■ Hard to spot where errors may occur

● What if you call a helper function in a destructor that ends up throwing
an exception?

■ Even harder to manage in evolving codebases as new errors are added

○ Can cause resource leaks and other unexpected behavior

■ Exceptions are forbidden in many codebases for this reason

Exceptions without RAII = sad times

void process_input() {
 char *buf = malloc(128);

 // read input from user:
 fgets(buf, 128, stdin);
 // do more processing on input:
 some_helper(input);

 free(buf);
}

int main() {
 while (true) {
 try {
 process_input();
 } catch (BadInputError) {
 cerr << "That wasn't valid, try again" << endl;
 }
 }
}

void some_helper(string input) {
 if (input == "uh oh") {
 throw BadInputError("I don't like that");
 }
}

Looks good to me?

Towards better error handling: Enums

● An enum (enumeration) is a type that can contain one of several variants 
enum TrafficLightColor {  
 Red,  
 Yellow,  
 Green,  
}  
 
let current_state: TrafficLightColor = TrafficLightColor::Green;

● A match expression is like a switch statement in C/C++/Java, except all possible variants
must be covered 
fn drive(light_state: TrafficLightColor) {  
 match light_state {  
 TrafficLightColor::Green => println!("zoom zoom!"),  
 TrafficLightColor::Red =>  
 println!("sitting like a boulder!"),  
 }  
}

Type TrafficLightColor

 Variants

error[E0004]: non-exhaustive patterns: `Yellow` not covered
 --> src/lib.rs:8:11
 |
1 | / enum TrafficLightColor {
2 | | Red,
3 | | Yellow,
 | | ------ not covered
4 | | Green,
5 | | }
 | |_- `TrafficLightColor` defined here
...
8 | match light_state {
 | ^^^^^^^^^^^ pattern `Yellow` not covered
 |
 = help: ensure that all possible cases are being handled, possibly by
adding wildcards or more match arms
 = note: the matched value is of type `TrafficLightColor`

https://doc.rust-lang.org/stable/error-index.html#E0004
https://play.rust-lang.org/#

Towards better error handling: Enums

● An enum (enumeration) is a type that can contain one of several variants 
enum TrafficLightColor {  
 Red,  
 Yellow,  
 Green,  
}  
 
let current_state: TrafficLightColor = TrafficLightColor::Green;

● A match expression is like a switch statement in C/C++/Java, except all possible variants
must be covered 
fn drive(light_state: TrafficLightColor) {  
 match light_state {  
 TrafficLightColor::Green => println!("zoom zoom!"),  
 TrafficLightColor::Yellow => println!("slowing down..."),  
 TrafficLightColor::Red => println!("sitting like a boulder!"),  
 }  
}

○ The compiler will warn you if there’s a possibility you missed!

Type TrafficLightColor

 Variants

Towards better error handling: Enums

● Can use a default binding to catch all other cases if there’s only a few you’re
interested in: 
match light_state {  
 TrafficLightColor::Green => println!("zoom zoom!"),  
 _ => println!("do not pass go"),  
}

 Default binding

Towards better error handling: Enums

● Unlike enums in most common languages, Rust enums can store arbitrary data! 
enum Location {  
 Coordinates(f32, f32),  
 Address(String),  
 Unknown,  
}

● You can extract data from variants using a match expression: 
fn print_location(loc: Location) {  
 match loc {  
 Location::Coordinates(lat, long) => {  
 println!("Person is at ({}, {})", lat, long);  
 },  
 Location::Address(addr) => {  
 println!("Person is at {}", addr);  
 },  
 Location::Unknown => println!("Location unknown!"),  
 }  
}

print_location( 
 Location::Address(
 "353 Jane Stanford Way".to_string()));

Error handling in Rust

● What if we use enums to clearly represent successful returns / errors?

○ If the functions run successfully, return Ok(whatever return value)

○ If an error happens, return Err(some error object)

● enum Result<T, E> {  
 Ok(T),  
 Err(E),  
}

(this Result type is part of the Rust
standard library, no need to define it
yourself)

Usage of Result

fn gen_num_sometimes() -> Result<u32, &'static str> {
 if get_random_num() > 10 {
 Ok(get_random_num())
 } else {
 Err("Spontaneous failure!")
 }
}

fn main() {
 match gen_num_sometimes() {
 Ok(num) => println!("Got number: {}", num),
 Err(message) => println!(“Operation failed: {}", message),
 }
}

Success return type Error return type

Comparison to C errors

● We had two main issues with C error handling:

○ It’s too easy to miss errors

○ Proper error handling is too verbose (need too much extra code to propagate errors)

● This fixes the first problem: it’s now obvious from the function signature which functions
can return errors, and the compiler will verify that you do something with a returned error

● Second problem is still an issue!

Comparison to C errors

● Error handling is still too verbose:
fn read_file(filename: &str) -> Result<String, io::Error> {
 let mut s = String::new();

 let result = File::open(filename);

 let mut f = match result {
 Ok(file) => file,
 Err(e) => return Err(e),
 };

 match f.read_to_string(&mut s) {
 Ok(_) => Ok(s),
 Err(e) => Err(e),
 }
}

Adapted from https://doc.rust-lang.org/edition-guide/rust-2018/error-handling-and-panics/the-question-mark-operator-for-easier-error-handling.html

https://doc.rust-lang.org/edition-guide/rust-2018/error-handling-and-panics/the-question-mark-operator-for-easier-error-handling.html

Meet the ? operator

● Suppose we have helper_function() -> Result<T, E>

● let val: T = helper_function()? means:

○ If helper_function returns Ok(some value), set val = that value

○ If helper function returns Err(some error), stop and return/propagate that error

fn read_file(filename: &str) -> Result<String, io::Error> {
 let mut s = String::new();

 let mut f = match File::open(filename) {
 Ok(file) => file,
 Err(e) => return Err(e),
 };

 match f.read_to_string(&mut s) {
 Ok(_) => Ok(s),
 Err(e) => return Err(e),
 }
}

fn read_file(filename: &str) -> Result<String, io::Error> {
 let mut s = String::new();

 let mut f = File::open(filename)?;

 f.read_to_string(&mut s)?;
 Ok(s)
}

Meet the ? operator

● Suppose we have helper_function() -> Result<T, E>

● let val: T = helper_function()? means:

○ If helper_function returns Ok(some value), set val = that value

○ If helper function returns Err(some error), stop and return/propagate that error

fn read_file(filename: &str) -> Result<String, io::Error> {
 let mut s = String::new();

 let mut f = match File::open(filename) {
 Ok(file) => file,
 Err(e) => return Err(e),
 };

 match f.read_to_string(&mut s) {
 Ok(_) => Ok(s),
 Err(e) => return Err(e),
 }
}

fn read_file(filename: &str) -> Result<String, io::Error> {
 let mut s = String::new();
 File::open(filename)?.read_to_string(&mut s)?;
 Ok(s)
}

Even shorter:

Meet the ? operator

● Why doesn’t this code compile? 
fn read_file(filename: &str) -> String {  
 let mut contents = String::new();  
 File::open(filename)?.read_to_string(&mut contents)?;  
 contents  
}

● Note that the ? operator is for propagating errors, and this function returns String
(i.e. it cannot return an error)

Panics

● What about errors that we don’t wish to propagate/handle?

○ Could be a serious, unrecoverable error

○ Could be an error that we don’t anticipate ever happening and don’t want to put the effort into

handling

● The panic! macro crashes a program immediately with an error message 

if sad_times() {  
 panic!("Sad times!");  
}

● Sometimes, a library function may give us an Err that we really don’t care to handle in any graceful way

○ E.g. if we are a terminal program and we fail to read input from the terminal, there isn’t really

anything graceful to do

○ Result::unwrap() and Result::expect() allow us to extract the returned value from an Ok()

result, panicking if we got an Err

unwrap() and expect()

// Panic if opening a file fails:
let mut file = File::open(filename).unwrap();
// Same thing, but print a more descriptive error message when panicking:
let mut file = File::open(filename).expect("Failed to open file");

// Panic if reading from stdin fails:
let mut input = String::new();
io::stdin().read_to_string(&mut input).expect("Failed to read from stdin”);

Handling nulls

“I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At
that time, I was designing the first comprehensive type system for references in an object
oriented language (ALGOL W). My goal was to ensure that all use of references should be
absolutely safe, with checking performed automatically by the compiler. But I couldn't
resist the temptation to put in a null reference, simply because it was so easy to
implement. This has led to innumerable errors, vulnerabilities, and system crashes, which
have probably caused a billion dollars of pain and damage in the last forty years.”

- Tony Hoare

NULL pointer dereferences

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=null+pointer

Nulls -> not null damage

● Most null pointer dereferences simply cause crashes (denial of service)… but not all

● CVE-2009-2694 in Pidgin messenger: https://www.cvedetails.com/cve/CVE-2009-2694/

● msn_slplink_message_find() retrieves previously-received parts of a message

● Special types of messages (“acknowledgement messages”) don’t have any message

contents. message->buffer is set to NULL

● When trying to re-assemble received data, msn_slplink_process_msg() calls

msn_slplink_message_find() and then runs memcpy(slpmsg->buffer + offset, data,
len);

● slpmsg->buffer is null, so the attacker-supplied offset can be used to control what memory
gets overwritten

● Similar vulnerability in Adobe Acrobat Pro: https://www.zerodayinitiative.com/advisories/
ZDI-19-871/

https://www.cvedetails.com/cve/CVE-2009-2694/
https://www.zerodayinitiative.com/advisories/ZDI-19-871/
https://www.zerodayinitiative.com/advisories/ZDI-19-871/

A sticky situation

● Why are NULLs so dangerous?

○ They place a huge burden on the programmer: any time you have a

pointer, you need to think, is it possible for this to be NULL?

○ Static analyzers can’t warn about all the possible NULLs without being

riddled with false positives

● What should we do about it?

enum Option<T> {
 None,
 Some(T),
}

(also from in the standard library)

fn feeling_lucky() -> Option<String> {
 if get_random_num() > 10 {
 Some(String::from("I'm feeling lucky!"))
 } else {
 None
 }
}

match feeling_lucky() {
 Some(message) => {
 println!("Got message: {}", message);
 },
 None => {
 println!("No message returned :-/");
 },
}

fn feeling_lucky() -> Option<String> {
 if get_random_num() > 10 {
 Some(String::from("I'm feeling lucky!"))
 } else {
 None
 }
}

// Check if is_none/is_some():
if feeling_lucky().is_none() {
 println!("Not feeling lucky :(");
}

// unwrap/expect work here too:
let message = feeling_lucky().unwrap();
let message = feeling_lucky().expect("feeling_lucky failed us!");

// you can also provide a default value in case None was returned:
let message = feeling_lucky().unwrap_or("Not lucky :(“.to_string());

// ? operator also works in functions that return Option:
let expanded_message = feeling_lucky()? + " Are you?";

fn feeling_lucky() -> Option<String> {
 if get_random_num() > 10 {
 Some(String::from("I'm feeling lucky!"))
 } else {
 None
 }
}

