
Ownership Continued

Ryan Eberhardt and Julio Ballista

April 8, 2021

Logistics

● Week 1 exercises due at 11:59 pm PST. Let us know if you need more
time!

● Week 2 exercises will be released today and will be due next Thursday

● If you're comfortable, post reflections on the #reflections channel on

Slack. Great way to synthesize learning and get a sense for the lessons
everyone else is picking up!

● Today: More on Ownership and Rust :D

Previously on 110L...

Ownership
let julio = Bear::get();
let ryan = julio;

julio; ryan;

How does ownership transfer actually look in memory?

Ownership in Memory

let julio = "Hi,friends".to_string();

length = 10

capacity = 10

data =

STACK

julio

'H'

'i'

','

HEAP

'f'

Ownership in Memory
let julio = "Hi,friends".to_string();
let ryan = julio;

length = 10

capacity = 10

data =

STACK

julio 'H'

'I'

','

HEAP

'f'
length = 10

capacity = 10

data =

ryan

This is known as a shallow copy. The contents of the stack
is copied for the new variable. The heap contents is not.

Ownership in Memory
let julio = "Hi,friends".to_string();
let ryan = julio;

length = 10

capacity = 10

data =

STACK

julio 'H'

'I'

','

HEAP

'f'
length = 10

capacity = 10

data =

ryan

What might happen if we didn't stop 'julio' from accessing the values in
its copy of the string object?

Ownership in Memory

fn main() {
let julio = "Hi,friends".to_string();
let ryan = julio;

}

End of variable scope!
Drop function called for
variables owning values

● When we reach the end of a
scope (designated by curly-
braces), the Drop function is
called.

● You can think of this being a
special function to properly free()
the entire object (maybe multiple
pointers to free, so the function
will have that implementation)

● Similar to the destructor in C++

● Types with the Rust Drop trait

have a Drop function to call
(more on traits soon!)

Ownership in Memory
let julio = "Hi,friends".to_string();
let ryan = julio;

length = 10

capacity = 10

data =

STACK

julio 'H'

'I'

','

HEAP

'f'
length = 10

capacity = 10

data =

ryan

DOUBLE FREE D: D: D:

💣💣

Ownership in Memory: Recap

● We make shallow copies of variables when passing ownership, and we
invalidate previous variables that no longer own the variable.

● The invalidation is to prevent double-frees - much safer when we know
exactly who should call the Drop function.

● If you wanted to make a deep copy (copy the data on the heap), Rust
has the clone function.

Clone function
let julio = "Hi,friends".to_string();
let ryan = julio.clone();

julio; ryan;

Now, julio and ryan have their own heap data!

Questions?

Ownership in Memory

let julio = 10;

value = 10

STACK

julio

?

?

?

HEAP

?

Ownership in Memory

let julio = 10;
let ryan = julio

value = 10

STACK

julio

?

?

?

HEAP

?value = 10ryan

What might happen if we didn't stop 'julio' from accessing the values in
its copy of the number object?

Ownership in Memory

let julio = 10;
let ryan = julio

value = 10

STACK

julio

?

?

?

HEAP

?value = 10ryan

Absolutely nothing - the heap is safe!

What's going on here?

● Some values in Rust do not make use of the heap, and are stored
directly on the stack. (integer types (u32), booleans, etc)..

● These variables are typically copied by default when assigning variables,
as you don't need to worry about any Drop function being called (and
hence, no memory issues!!)

● Types with this property have the Copy trait.

● If you have the Copy trait, you cannot also have the Drop trait (why?)

Copy Trait Error

Without the Copy trait, Rust assumes ownership is moving!

Questions?

Borrowing++

Borrowing: Recap
let julio = Bear::get();
my_cool_bear_function(&julio)
/* The julio variable can still be used here! */

julio; my_cool_bear_function;

What are the rules behind the &?

Variables Rules in Rust

● All pieces of data, by default, are immutable in Rust.

● You can imagine that const is secretly behind every variable you

instantiate.

● The Rust Compiler will not compile your code if you change any variable

that is not mutable.

● The mut keyword specifies a variable to be mutable. It's like the

opposite const.

Mutable Variables

let lst = vec![1,2,3];
vec.push(4);

let mut lst = vec![1,2,3];
vec.push(4);

'Borrowing' creates a type!

let julio = Bear::get();
my_cool_bear_function(&julio)
/* The julio variable can still be used here! */

let julio = Bear::get();
let julio_reference = &julio;
my_cool_bear_function(julio_reference);
/* The julio variable can still be used here! */

"Borrowing Type" == References!

let julio = Bear::get();
let julio_reference = &julio;
// let julio_mutable_reference = &mut julio;

my_cool_bear_function(julio_reference);
/* The julio variable can still be used here! */

● & creates a new variable
type, known as a
reference to that type.

● Because this is another
type, they too are
immutable by default, and
can be made mutable
with the mut keyword.

● Mutable references can
only be made if the actual
variable is also mutable!

Code: Immutable + Mutable References

fn append_to_vector(lst: &Vec<u32>) {
 lst.push(3);
}

fn main() {
 let mut lst = vec![1,2,3];
 append_to_vector(&lst);
}

Function takes in a reference to a vector!

Main passes a reference to append_to_vector...

Code: Immutable + Mutable References

fn append_to_vector(lst: &mut Vec<u32>) {
 lst.push(3);
}

fn main() {
 let mut lst = vec![1,2,3];
 append_to_vector(&mut lst);
}

But it must be a mutable reference since the vector is changed!

Main must also pass a mutable reference through!

Questions?

Borrowing + References: The Catch

let mut bear = Bear::get();

let pink_shirt = &bear; let blue_shirt = &bear;

Because both references are immutable, both painters can trust the bear they see!

Borrowing + References: The Catch

let mut bear = Bear::get();

let pink_shirt = &bear; let blue_shirt = &bear; let evil_patrick = &mut bear;

Borrowing + References: The Catch

let mut bear = Bear::get();

let pink_shirt = &bear; let blue_shirt = &bear; let evil_patrick = &mut bear;

References Rules

● We can have many kinds of immutable references for a variable (Think
that many painters can paint on their canvas, so long as they know no
one will change that painting)

● But we can only have one mutable reference at a time. Otherwise, the
immutable references might see different data than what they initially
expected.

&bear

&bear

&bear &bear
OR &mut bear

Code Example

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=3e973c12558d590656f17b32daaf912d

Iterator Invalidation Avoided!
fn main() {
 let mut v = vec![1, 2, 3];
 /* This for loop borrows the vector above to do its work. */
 for i in &mut v {
 println!("{}", i);
 v.push(34);
 }
}

1

2

3

vec
Old buffer 1

2

3

New Buffer

34

i

References Recap [End]

● With the ownership and borrowing rules, many different kinds of
memory errors are avoided :D

● But they do lead to trickier code to write - the Rust compiler will fight
with you as you write these programs

● Take it slow, ask questions in the #rust-questions channel!

