
Memory Safety in Rust

Ryan Eberhardt and Julio Ballista

April 6, 2021

Logistics

● Please make sure you’re on Slack

● Week 1 exercises due on Thursday

○ Please let us know if you need additional time to complete them

○ A blog post can be substituted for weekly exercises

● Today: What is Rust’s “ownership model,” and how does it prevent common
memory errors?

○ Specifically focusing on memory leaks, double frees, and use-after frees

○ Thursday will show how Rust prevents other sorts of memory errors

Identifying Memory Errors

A Memory Exercise

● We thank Will Crichton for this exercise and for giving us permission to use it
in this class!

● Discuss your answers to the exercise in groups (we'll assign you to different
breakout rooms in Zoom)

Memory Leaks

void vec_push(Vec* vec, int n) {
 if (vec->length == vec->capacity) {
 int new_capacity = vec->capacity * 2;
 int* new_data = (int*) malloc(new_capacity);
 assert(new_data != NULL);

 for (int i = 0; i < vec->length; ++i) {
 new_data[i] = vec->data[i];
 }

 vec->data = new_data; // OOP: we forget to free the old data
 vec->capacity = new_capacity;
 }

 vec->data[vec->length] = n;
 ++vec->length;
}

Old buffer

Element 1

Element 2

Element 3

Element 4

Element 1

Element 2

Element 3

Element 4

New buffer

vec->data

Never freed! :(

Double Frees

void main() {
 Vec* vec = vec_new();
 vec_push(vec, 107);

 int* n = &vec->data[0];
 vec_push(vec, 110);
 printf("%d\n", *n);

 free(vec->data);
 vec_free(vec); // YIKES
}

Double free: a buffer is freed twice. (Sounds innocuous, but can actually lead to
Remote Code Execution: take CS 155) 
(Here, we free(vec->data), and then call vec_free, which does the same thing)

Dangling Pointers

Vec* vec_new() {
 Vec vec;
 vec.data = NULL;
 vec.length = 0;
 vec.capacity = 0;
 return &vec; // OOF
}

Dangling pointer: A pointer that is referencing memory that isn’t there anymore
 
(Here, vec points into the stack frame of vec_new, but as soon as vec_new returns, that
memory is gone)

Stack

main()

vec_new()
Vec vec <vectory stuff>

Vec vec

Dangling Pointers

Vec* vec_new() {
 Vec vec;
 vec.data = NULL;
 vec.length = 0;
 vec.capacity = 0;
 return &vec; // OOF
}

Dangling pointer: A pointer that is referencing memory that isn’t there anymore
 
(Here, vec points into the stack frame of vec_new, but as soon as vec_new returns, that
memory is gone)

Stack

main()

vec_push()
int new_capacity
int new_data
…

💣

Vec vec

Iterator Invalidation

void main() {
 Vec* vec = vec_new();
 vec_push(vec, 107);

 int* n = &vec->data[0];
 vec_push(vec, 110);
 printf("%d\n", *n); // :(

 free(vec->data);
 vec_free(vec);
}

Iterator invalidation: a type of dangling pointer where an iterator (a reference to a
certain position within an iterable container) can no longer be used because the
container was modified  

Here, vec_push can cause the vector buffer to be reallocated

Old buffer

Element 1

Element 2

Element 3

Element 4

Element 1

Element 2

Element 3

Element 4

New buffer

vec->data

int *n

💣

What’s wrong with this code?

● This code is really bad code (obviously it has a lot of bugs)

● But… Why? What about it makes it bad code?

Taking a step back

What makes good code?

● A natural decomposition for StoneMasonKarel is
to implement a repairColumn function, then
write: 
 
while (frontIsClear()) { 
 repairColumn(); 
 moveToNextColumn(); 
} 
repairColumn();

● Many 106A students write repairColumn
functions that sometimes end with Karel facing
south, and other times end with Karel facing east

● Why is this bad?

What makes good code?

● Pre/postconditions are essential to breaking code into small pieces with well-
defined interfaces in between

○ We want to be able to reason about each small piece in isolation

○ Then, if we can verify that preconditions/postconditions are upheld in

isolation, we can string together a bunch of components and simply
verify that the preconditions/postconditions all fit together without
needing to keep the entire program in our heads

● It’s the programmer’s responsibility to make sure the pre/postconditions are
upheld

Good memory management

● In any complex program, you’ll allocate memory and pass it around the
codebase. Where should that memory be freed?

● If you free too early, other parts of your code might still be using

pointers to that memory

● If you don’t free anywhere (or you free in a function that only gets called

sometimes), you’ll have a memory leak

● Good C/C++ code will clearly define how memory is passed around and

“who” is responsible for cleaning it up

● If you read C/C++ code, you’ll see notions of “ownership” in the comments,

where the “owner” is responsible for the memory

/* Get status of the virtual port (ex. tunnel, patch).
 *
 * Returns '0' if 'port' is not a virtual port or has no errors.
 * Otherwise, stores the error string in '*errp' and returns positive errno
 * value. The caller is responsible for freeing '*errp' (with free()).
 *
 * This function may be a null pointer if the ofproto implementation does
 * not support any virtual ports or their states.
 */
int (*vport_get_status)(const struct ofport *port, char **errp);

Open vSwitch

https://github.com/openvswitch/ovs/blob/134e6831acca48f10df3d59b8e1567c24dd925d2/ofproto/ofproto-provider.h#L1094

/**
 * @note Any old dictionary present is discarded and replaced with a copy of the new one. The
 * caller still owns val is and responsible for freeing it.
 */
int av_opt_set_dict_val(void *obj, const char *name, const AVDictionary *val, int search_flags);

ffmpeg

https://github.com/FFmpeg/FFmpeg/blob/f1894c206eec463832eef851a5388949a68a050f/libavutil/opt.h#L695

/**
 * iscsi_boot_create_target() - create boot target sysfs dir
 * @boot_kset: boot kset
 * @index: the target id
 * @data: driver specific data for target
 * @show: attr show function
 * @is_visible: attr visibility function
 * @release: release function
 *
 * Note: The boot sysfs lib will free the data passed in for the caller
 * when all refs to the target kobject have been released.
 */
struct iscsi_boot_kobj *
iscsi_boot_create_target(struct iscsi_boot_kset *boot_kset, int index,

 void *data,
 ssize_t (*show) (void *data, int type, char *buf),
 umode_t (*is_visible) (void *data, int type),
 void (*release) (void *data))

{
return iscsi_boot_create_kobj(boot_kset, &iscsi_boot_target_attr_group,

 "target%d", index, data, show, is_visible,
 release);

}
EXPORT_SYMBOL_GPL(iscsi_boot_create_target);

Linux kernel

https://github.com/torvalds/linux/blob/d95236782b8d6535d5a9f3fce15af8e29c195b34/drivers/scsi/iscsi_boot_sysfs.c#L389

/* Looks up a port named 'devname' in 'ofproto'. On success, returns 0 and
 * initializes '*port' appropriately. Otherwise, returns a positive errno
 * value.
 *
 * The caller owns the data in 'port' and must free it with
 * ofproto_port_destroy() when it is no longer needed. */
int (*port_query_by_name)(const struct ofproto *ofproto,
 const char *devname, struct ofproto_port *port);

Open vSwitch

Sometimes, custom cleanup functions must be used to free memory. Calling free() on this
memory would be a bug!

https://github.com/openvswitch/ovs/blob/134e6831acca48f10df3d59b8e1567c24dd925d2/ofproto/ofproto-provider.h#L1059

/**
 * dvb_unregister_frontend() - Unregisters a DVB frontend
 *
 * @fe: pointer to &struct dvb_frontend
 *
 * Stops the frontend kthread, calls dvb_unregister_device() and frees the
 * private frontend data allocated by dvb_register_frontend().
 *
 * NOTE: This function doesn't frees the memory allocated by the demod,
 * by the SEC driver and by the tuner. In order to free it, an explicit call to
 * dvb_frontend_detach() is needed, after calling this function.
 */
int dvb_unregister_frontend(struct dvb_frontend *fe);

Linux kernel

Sometimes, custom cleanup functions must be used to free memory. Calling free() on this
memory would be a bug!

https://github.com/torvalds/linux/blob/d95236782b8d6535d5a9f3fce15af8e29c195b34/include/media/dvb_frontend.h#L717

Miller

static void mapper_count_similar_free(mapper_t* pmapper, context_t* _) {
mapper_count_similar_state_t* pstate = pmapper->pvstate;
slls_free(pstate->pgroup_by_field_names);

// lhmslv_free will free the keys: we only need to free the void-star values.
for (lhmslve_t* pa = pstate->pcounts_by_group->phead; pa != NULL; pa = pa->pnext) {

unsigned long long* pcount = pa->pvvalue;
free(pcount);

}
lhmslv_free(pstate->pcounts_by_group);

 ...
}

Ownership can sometimes get extremely complicated, where one part of the codebase is
responsible for freeing part of a data structure and a different part of the codebase is

responsible for freeing a different part

https://github.com/johnkerl/miller/blob/0290ceff9de235e70a73e4ae7c6d59fd0e80fda1/c/mapping/mapper_count_similar.c#L121

Pre/postconditions must be consistently upheld

● It’s up to the programmer to make sure to get this right. If you don’t uphold
the interface, your program is broken

○ Consequences: anything from denial of service (e.g. memory leak) to

remote code execution (e.g. double free, use-after free, buffer overflow)

● The compiler cannot help you out

○ Static analyzers can help sometimes, but not always (see week 1
exercises)

● Key point: compiler does not know what your postconditions are, because
it’s not possible to express in the C language

Type systems

● The types of a programming language are the nouns of a spoken language

○ When you talk, what do you talk about?

● C type system: numbers, pointers, structs… not much else

○ Extremely simple: can learn most of the C language in half a quarter of CS 107

○ Simple != easy

strdup definition:
char *strdup(const char *s);

Bad strdup usage:
const char *hello = "hello world";
char *duplicate = strdup(hello);
return;

Compiler’s analysis:
Passes a char* to strdup ✅

Stores the return value in a char* ✅

Everything looks good! ✅

strdup manpage:
The strdup() function returns a pointer to a
new string which is a duplicate of the
string s. Memory for the new string is
obtained with malloc(3), and can be freed
with free(3).

Experienced programmer’s analysis
Receives a heap-allocated string from strdup ✅

Returns before freeing the string! 🚫

Type systems

● The types of a programming language are the nouns of a spoken language

○ When you talk, what do you talk about?

● C type system: numbers, pointers, structs… not much else

○ Extremely simple: can learn most of the C language in half a quarter of CS 107

○ Simple != easy

strdup definition:
char *strdup(const char *s);

● The pre/postconditions may be written in comments, but they are not present in the actual code,
because the C language does not have a way for them to be expressed

● Consequently: the compiler is unaware of what you’re trying to do

strdup manpage:
The strdup() function returns a pointer to a
new string which is a duplicate of the
string s. Memory for the new string is
obtained with malloc(3), and can be freed
with free(3).

Are there better type systems that we can use to specify
our preconditions/postconditions in the code?

(implication: if the compiler can understand your pre/postconditions, it can verify that they are met)

(Meet Rust 🦀)

What if Ownership lived in the
programming language?

Ownership Visualized

let julio = Bear::get()

Ownership Visualized

fn main() {
let julio = Bear::get();

}

Toys need to be put back when we're done!

Ownership Visualized

let julio = Bear::get();

● This 'julio' is the owner of the bear. (I own it)

● I (julio) can do anything I want with the toy,

like call functions wrapped within it

● This person is responsible for putting the

gift back where they found it before leaving
(free the memory!)

Ownership Visualized - What happens now?
let julio = Bear::get();
let ryan = julio;

let julio = ... let ryan = julio;

Ownership Visualized - What happens now?

let ryan = "julio";

● Now, Ryan is the owner of the toy!

● Ryan can do anything he wants with the toy,

such as call functions on it.

● Ryan is now responsible for putting the toy

back where they found it before leaving (free
the memory!)

What about Julio?

Ownership Visualized - What happens now?

● Julio has given the toy to Ryan!!

● No ownership of the toy anymore :(

● Can't do ANYTHING with this string

anymore :(

● sad.

● But no longer responsible for putting the

toy back :D
let julio = ...

Let's see it run!

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&code=%0D%0Afn%20main()%20%7B%0D%0A%20let%20julio%20=%20%22Hi,%20friends!%22.to_string();%0D%0A%20let%20ryan%20=%20julio;%0D%0A%20%0D%0A%20/*%20Print%20what%20the%20value%20of%20ryan%20is!%20*/%0D%0A%20println!(%22%7B%7D%22,%20ryan);%0D%0A%20%0D%0A%20/*%20Print%20what%20the%20value%20of%20julio%20is%20*/%0D%0A%20//println!(%22%7B%7D%22,%20julio);%0D%0A%7D

When else is ownership transferred?

let julio = Bear::get()
my_cool_bear_function(julio); <-- This is letting the function own the julio!
/* julio no longer owns the toy D: Compiler wont let you use it! */

● Function calls can take ownership of
variables as well!

● This means that at the end of the function
execution, they will be responsible for
freeing the toy in memory

● It also means you can no longer use your
toy back when the function returns!

How will I ever decompose code????

Borrowing
let julio = Bear::get();
my_cool_bear_function(&julio)
/* The julio variable can still be used here! */

let julio = ... my_cool_bear_function(Bear: &Bear)

Hey,
my_cool_bear_function,

you could BORROW this toy.
Just give it back when you're

done!

Thank
you, this means

you'll have to put the
toy back when you're

done though!

Ownership (From The Rust Book!)

Reminder: The ownership and borrowing
rules are enforced at compile time!

Takeaways

● In Rust, every piece of memory is “owned” by a variable/function

● This ownership is explicit in the code (as opposed to C/C++, where

ownership is usually described in function comments)

● When the owner goes out of scope, the compiler inserts code to free the

memory

● Because of the ownership model, you can’t have:

● Memory leaks

● Double frees

● Use-after-frees

● Other memory errors — next class!

Next Time + Resources [End]

● What other kinds of references / variables can we create in Rust?

● What does ownership transferring look like in memory?

● More code examples :D

● Ownership and borrowing for visual learners!

● A great resource on iterating over vectors in Rust

● A Medium article about ownership, borrowing, and lifetimes

● CS242 lecture notes — shout out to Will Crichton to providing advice on

explaining some of these concepts!

● The Rust book

● Check out sections 4.1 and 4.2 (deeper explanation of lifetimes)

https://rufflewind.com/2017-02-15/rust-move-copy-borrow
http://xion.io/post/code/rust-for-loop.html
https://medium.com/@bugaevc/understanding-rust-ownership-borrowing-lifetimes-ff9ee9f79a9c
http://cs242.stanford.edu/f19/lectures/06-2-memory-safety
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/1.4.0/nomicon/ownership.html

