
Program Analysis

Ryan Eberhardt and Julio Ballista

April 1, 2021

Logistics

● Please make sure you’re on Slack

● Fill out the intro survey if you haven’t already

● Week 1 exercises + survey coming out today

● Today: what are some tools that we can use to find mistakes in C/C++ code?

○ What are their limitations?

● Next week: How do other languages address the shortcomings of C?

How can we find bugs in a program?

How can we find bugs in a program?

● Dynamic analysis: run the program and watch what it does

● Static analysis: read the source code

Dynamic Analysis

Valgrind

● Instruments binaries on the fly

int main() {
 char *buf = (char*)malloc(8);
 buf[16] = 'a';
}

mov edi, 8
call malloc
mov QWORD PTR [rbp-8], rax

mov rax, QWORD PTR [rbp-8]
add rax, 16
mov BYTE PTR [rax], 97

mov edi, 8
call valgrind_malloc
mov QWORD PTR [rbp-8], rax
record memory write ^

mov rax, QWORD PTR [rbp-8]
record memory read ^
add rax, 16
mov BYTE PTR [rax], 97  
record memory write ^

(compiler)

(valgrind)

Invalid write of size 4
(writing to the heap, but it’s not
inside any heap allocation that was
previously made)

Valgrind

● Works with any binary compiled by any compiler (even if you don’t have
source code available!)

● Downside: not a lot of information is available in binaries

○ E.g. the stack is just a hunk of memory. No information about how it’s

allocated into variables

○ => cannot detect stack-based buffer overflows!

LLVM Sanitizers

● Same idea, but instrument source code (kind of)

● Implemented as part of the LLVM compiler suite (e.g. clang)

● Because more information is available pre-compilation, there is a lot more

analysis that sanitizers can do (and they’re also easier to implement)

int main() {
 char buf[8];  
 Record stack buffer “buf” with size 8
 buf[16] = 'a';  
 Record write to “buf” with offset 16
}

LLVM Sanitizers

● AddressSanitizer

○ Finds use of improper memory addresses: out of bounds memory accesses, double

free, use after free

● LeakSanitizer

○ Finds memory leaks

● MemorySanitizer

○ Finds use of uninitialized memory

● UndefinedBehaviorSanitizer

○ Finds usage of null pointers, integer/float overflow, etc

● ThreadSanitizer

○ Finds improper usage of threads (second half of CS 110)

● More…

Cool! Let’s sanitize all the code!! 🏎🔥💯

(screw)

Fundamental limitation of dynamic analysis

● Dynamic analysis can only report bad behavior that actually happened

● If your program worked fine with the input you provided, but it might do bad

things in certain edge cases, dynamic analysis cannot tell you anything about
that

#include <stdio.h>
#include <string.h>
int main() {
 char s[100];
 int i;
 printf("\nEnter a string : ");
 gets(s);
 for (i = 0; s[i]!='\0'; i++) {
 if(s[i] >= 'a' && s[i] <= 'z') {
 s[i] = s[i] -32;
 }
 }
 printf("\nString in Upper Case = %s", s);
 return 0;
}

How can we find weird edge cases?

Fuzzing

Input seed

Fuzzing

Input seed

Control flow graph

Fuzzing

Input seed

Control flow graph

(semi-random)
mutation

run the program again
and observe behavior

These inputs
made the

program do
new things!

Fuzzing

Input seed

Control flow graph

(semi-random)
mutation

run the program again
and observe behavior more mutation

run the
program again

More new
behavior!

Continue this process forever…

Fuzzing

● Very simple but extremely effective

● Most common fuzzers: AFL and libfuzzer

● Still, cannot provide any guarantees that a program is bug-free (if the fuzzer

didn’t find anything in 24 hours, maybe we just didn’t run it long enough)

● Google OSS-Fuzz is a large cluster that fuzzes open-source software 24/7

https://github.com/google/AFL
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/oss-fuzz

Static Analysis

You Be the Static Analyzer: Round 1

You want to write a tool to help people writing code like this. What do you do?
#include <stdio.h>
#include <string.h>
int main() {
 char s[100];
 int i;
 printf("\nEnter a string : ");
 gets(s);
 for (i = 0; s[i]!='\0'; i++) {
 if(s[i] >= 'a' && s[i] <= 'z') {
 s[i] = s[i] -32;
 }
 }
 printf("\nString in Upper Case = %s", s);
 return 0;
}

Basic static analysis (“linting”)

● Linters employ very simple techniques (e.g. ctrl+f) to find obvious mistakes

● The person running the linter can configure a set of rules to enforce

○ Rules are intended to improve the style of the codebase

○ Just because there is a linter error doesn’t mean the code is broken (e.g. it’s possible

to call strcpy() without introducing bugs, but many linters will complain if you call it)

● Common C/C++ linter: clang-tidy

○ Can even auto-fix many of the issues!

Stephen C. Johnson, a computer scientist at Bell Labs, came up with lint in 1978… The
term "lint" was derived from the name of the tiny bits of fiber and fluff shed by clothing, as the
command should act like a dryer machine lint trap, detecting small errors with big effects.
https://en.wikipedia.org/wiki/Lint_(software)

https://clang.llvm.org/extra/clang-tidy/
https://en.wikipedia.org/wiki/Lint_(software)

You Be the Static Analyzer: Round 2

You want to write a tool to help people writing code like this. What do you do?
void printToUpper(const char *str) {
 char *upper = strdup(str);
 for (int i = 0; str[i] != '\0'; i++) {
 if(str[i] >= 'a' && str[i] <= 'z') {
 upper[i] = str[i] - ('a' - 'A');
 }
 }
 printf("%s\n", upper);
 free(upper);
}

int main(int argc, char *argv[]) {
 printf("Enter a string to make uppercase,
or type \"quit\" to quit:\n");
 char input[512];
 // safely read input string
 fgets(input, sizeof(input), stdin);
 char *toMakeUppercase;
 if (strcmp(input, "quit") != 0) {
 toMakeUppercase = input;
 }
 printToUpper(toMakeUppercase);
}

Dataflow analysis

We can trace through how the program might execute, keeping track of possible variable values

int main(int argc, char *argv[]) {
 printf("Enter a string to make uppercase,
or type \"quit\" to quit:\n");
 char input[512];
 // safely read input string
 fgets(input, sizeof(input), stdin);
 char *toMakeUppercase;
 if (strcmp(input, "quit") != 0) {
 toMakeUppercase = input;
 }
 printToUpper(toMakeUppercase);
}

toMakeUppercase = {uninitialized}

Dataflow analysis

We can trace through how the program might execute, keeping track of possible variable values

int main(int argc, char *argv[]) {
 printf("Enter a string to make uppercase,
or type \"quit\" to quit:\n");
 char input[512];
 // safely read input string
 fgets(input, sizeof(input), stdin);
 char *toMakeUppercase;
 if (strcmp(input, "quit") != 0) {
 toMakeUppercase = input;
 }
 printToUpper(toMakeUppercase);
}

toMakeUppercase = {uninitialized}

Dataflow analysis

We can trace through how the program might execute, keeping track of possible variable values

int main(int argc, char *argv[]) {
 printf("Enter a string to make uppercase,
or type \"quit\" to quit:\n");
 char input[512];
 // safely read input string
 fgets(input, sizeof(input), stdin);
 char *toMakeUppercase;
 if (strcmp(input, "quit") != 0) {
 toMakeUppercase = input;
 }
 printToUpper(toMakeUppercase);
}

toMakeUppercase = {uninitialized, input}

printToUpper called with a possibly uninitialized argument!

Dataflow analysis: very powerful!

You want to write a tool to help people writing code like this. What do you do?
int main(int argc, char *argv[]) {
 // Goal: parse out a string between brackets
 // (e.g. " [target string]" -> "target string")

 char *parsed = strdup(argv[1]);

 // Find open bracket
 char *open_bracket = strchr(parsed, '[');
 if (open_bracket == NULL) {
 printf("Malformed input!\n");
 return 1;
 }

 // Make the output string start after the open bracket
 parsed = open_bracket + 1;

 // Find the close bracket
 char *close_bracket = strchr(parsed, ']');
 if (close_bracket == NULL) {
 printf("Malformed input!\n");
 return 1;
 }

 // Replace the close bracket with a null  
 // terminator to end the parsed string there
 *close_bracket = '\0';

 printf("Parsed string: %s\n", parsed);
 free(parsed);
 return 0;
}

Common mistake: early
return fails to clean up
resources

Dataflow analysis: very powerful!

Liveness analysis: observe when variables go away, and make sure they’re cleaned up appropriately

int main(int argc, char *argv[]) {
 // Goal: parse out a string between brackets
 // (e.g. " [target string]" -> "target string")

 char *parsed = strdup(argv[1]);

 // Find open bracket
 char *open_bracket = strchr(parsed, '[');
 if (open_bracket == NULL) {
 printf("Malformed input!\n");
 return 1;
 }

 // Make the output string start after the open bracket
 parsed = open_bracket + 1;

 // Find the close bracket
 char *close_bracket = strchr(parsed, ']');
 if (close_bracket == NULL) {
 printf("Malformed input!\n");
 return 1;
 }

 // Replace the close bracket with a null  
 // terminator to end the parsed string there
 *close_bracket = '\0';

 printf("Parsed string: %s\n", parsed);
 free(parsed);
 return 0;
}

parsed = {heap allocation}

Dataflow analysis: very powerful!

Liveness analysis: observe when variables go away, and make sure they’re cleaned up appropriately

int main(int argc, char *argv[]) {
 // Goal: parse out a string between brackets
 // (e.g. " [target string]" -> "target string")

 char *parsed = strdup(argv[1]);

 // Find open bracket
 char *open_bracket = strchr(parsed, '[');
 if (open_bracket == NULL) {
 printf("Malformed input!\n");
 return 1;
 }

 // Make the output string start after the open bracket
 parsed = open_bracket + 1;

 // Find the close bracket
 char *close_bracket = strchr(parsed, ']');
 if (close_bracket == NULL) {
 printf("Malformed input!\n");
 return 1;
 }

 // Replace the close bracket with a null  
 // terminator to end the parsed string there
 *close_bracket = '\0';

 printf("Parsed string: %s\n", parsed);
 free(parsed);
 return 0;
}

parsed = {heap allocation}
parsed is no longer live, but is still
a heap allocation!

Dataflow analysis: works across functions

Tracking calls to functions is no different from tracing paths through if statements
void freeSometimes(void *buf) {
 if (rand() == 1) {
 return;
 }
 free(buf);
}

int main() {
 void *buf = malloc(8);
 freeSometimes(buf);
 return 0;
}

buf = {heap allocation}

Dataflow analysis: works across functions

Tracking calls to functions is no different from tracing paths through if statements
void freeSometimes(void *buf) {
 if (rand() == 1) {
 return;
 }
 free(buf);
}

int main() {
 void *buf = malloc(8);
 freeSometimes(buf);
 return 0;
}

buf = {heap allocation}

Dataflow analysis: works across functions

Tracking calls to functions is no different from tracing paths through if statements
void freeSometimes(void *buf) {
 if (rand() == 1) {
 return;
 }
 free(buf);
}

int main() {
 void *buf = malloc(8);
 freeSometimes(buf);
 return 0;
}

buf = {heap allocation}

buf = {heap allocation}

Dataflow analysis: works across functions

Tracking calls to functions is no different from tracing paths through if statements
void freeSometimes(void *buf) {
 if (rand() == 1) {
 return;
 }
 free(buf);
}

int main() {
 void *buf = malloc(8);
 freeSometimes(buf);
 return 0;
}

buf = {heap allocation}

buf = {freed allocation}

Dataflow analysis: works across functions

Tracking calls to functions is no different from tracing paths through if statements
void freeSometimes(void *buf) {
 if (rand() == 1) {
 return;
 }
 free(buf);
}

int main() {
 void *buf = malloc(8);
 freeSometimes(buf);
 return 0;
}

buf = {heap allocation, freed allocation}

Dataflow analysis: works across functions

Tracking calls to functions is no different from tracing paths through if statements
broken.c:13:5: warning: Potential leak of memory pointed to by 'buf' [clang-analyzer-
unix.Malloc]
 return 0;
 ^
broken.c:11:17: note: Memory is allocated
 void *buf = malloc(8);
 ^
broken.c:13:5: note: Potential leak of memory pointed to by 'buf'
 return 0;
 ^

Limitations

● False positives

○ Dataflow analysis will follow each branch, even if it’s impossible for some

condition to be true in real life

○ False positives are the Achille’s heel of static analysis. Need a good

signal/noise ratio or else no one will use your analyzer

● Many static analyzers only analyze a single file at a time

○ They don’t do dataflow analysis into/out of functions elsewhere in the
codebase

Take CS 243 for more info!

Cool! Let’s tidy all the code!! 🏎🔥💯

(screw)

static analysis to the moon 🚀 🚀🌙

Low-hanging fruit #1

int main(int argc, char *argv[]) {
 char *message = strchr(argv[1], 'a');
 printf("%s\n", message);
}

Low-hanging fruit #1

🍓 clang-tidy easy.c
🍓 cppcheck easy.c
Checking easy.c ...
🍓 scan-build clang-11 -Wall easy.c  
scan-build: Using '/usr/local/Cellar/llvm/11.0.0_1/bin/clang-11' for static analysis
scan-build: Analysis run complete.
scan-build: Removing directory '/var/folders/6_/jdc6ljyd5n795x1xl8drptm80000gn/T/scan-
build-2021-04-01-002241-43549-1' because it contains no reports.
scan-build: No bugs found.

How do we fix this?

● Okay, I’ll just make sure programs can handle receiving NULL from strchr

● But what if the program is calling strchr on a string that is guaranteed to have

the character they’re looking for? (i.e. strchr will for sure not return NULL)

● And what about all the other functions that can potentially return NULL for

one reason or another?

● And what about…

Low-hanging fruit #2

int main(int argc, char *argv[]) {
 char buf[16];
 strncpy(buf, argv[1], sizeof(buf));
 printf("%s\n", buf);
}

Low-hanging fruit #2

🍓 clang-tidy easy.c
🍓 cppcheck easy.c
Checking easy.c ...
🍓 scan-build clang-11 -Wall easy.c  
scan-build: Using '/usr/local/Cellar/llvm/11.0.0_1/bin/clang-11' for static analysis
scan-build: Analysis run complete.
scan-build: Removing directory '/var/folders/6_/jdc6ljyd5n795x1xl8drptm80000gn/T/scan-
build-2021-04-01-002241-43549-1' because it contains no reports.
scan-build: No bugs found.

How do we fix this?

● Okay, I’ll just make sure programs add a null terminator after calling strncpy

● But what if the program actually uses the copied “string” as a character array

instead of a null-terminated string (i.e. the code is actually fine)?

● And how are you going to track down every function that depends on the

string having a null terminator?

● Note: outright banning strchr() would be a better idea, but there are still other

ways we could end up with a char* that is not a null-terminated string

Fundamental limitations of static analysis

● If you can only look at a few lines of code, it’s hard to tell (without broader context)
whether that code is safe

● Getting broader context is impossible in the general case because of the halting
problem

○ We can guesstimate what values get passed around in a program using

dataflow analysis, and we can guesstimate how they get used, but it breaks
down when code gets complicated

● You can always add more specific things to check for, but there will always be other
ways to mess up

● Is there some way we can make it easier to verify small snippets of code in
isolation, without broader context?

Taking a step back

What’s the matter with strncpy()?

● A natural decomposition for StoneMasonKarel is
to implement a repairColumn function, then write: 
 
while (frontIsClear()) { 
 repairColumn(); 
 moveToNextColumn(); 
} 
repairColumn();

● This only works if repairColumn has a simple and
consistent postcondition (e.g. Karel is facing east)

● If Karel is facing east sometimes but facing south
other times, this program gets a lot more messy…

What’s the matter with strncpy()?

● Why do we care about specifying preconditions/postconditions?

○ If we can verify that preconditions/postconditions are upheld in isolation, then

we can string together a bunch of components and simply verify that the
preconditions/postconditions all fit together without needing to keep the entire
program in our heads

● Postconditions should be simple and consistently upheld
○ If your postconditions are complicated, reasoning about function use and code

correctness is really hard

○ It’s the programmer’s responsibility to make sure the postconditions are upheld

(otherwise the function is broken). The compiler doesn’t necessarily understand
what your postconditions are

Pre/postconditions should be simple

The strcpy() function copies the string pointed to by src, including
the terminating null byte ('\0'), to the buffer pointed to by dest… The
strncpy() function is similar, except that at most n bytes of src are
copied. Warning: If there is no null byte among the first n bytes of
src, the string placed in dest will not be null-terminated.
If the length of src is less than n, strncpy() writes additional null
bytes to dest to ensure that a total of n bytes are written.

The strlcpy() function copies up
to size - 1 characters from the
NUL-terminated string src to
dst, NUL-terminating the result.

strncpy() man page: strlcpy() man page:

Translation: strncpy returns a string
sometimes. Other times, it returns a
character buffer with n bytes of source
data.

Translation: strncpy returns a string.

Pre/postconditions should be consistently upheld

● If your postcondition says your function returns something, you need to
ensure it actually returns that thing in all cases

● Anyone using the function must ensure that they can handle whatever is
returned

● strncpy() postcondition: returns a string or character array

● Anyone calling strncpy() must be prepared to handle a string or character

array

Pre/postconditions should be consistently upheld

● strncpy() postcondition: returns a string or character array

● Anyone calling strncpy() must be prepared to handle a string or character

array

● It’s up to the programmer to make sure to get this right. Is there a way we can

get a compiler/static analyzer to check this?

● Key point: compiler does not know what your postconditions are, because

it’s not possible to express in the C language

Type systems

● The types of a programming language are the nouns of a spoken language

○ When you talk, what do you talk about?

● C type system: numbers, pointers, structs… not much else

○ Extremely simple: can learn most of the C language in half a quarter of CS 107

○ Simple != easy

strncpy definition:
strncpy(char *dst, const char *src,  
 size_t n);

Takes a mutable char pointer, an
immutable char pointer, and a number

strncpy usage:
char buf[16];
strncpy(buf, argv[1], sizeof(buf));
printf("%s\n", buf);

Passes a mutable char pointer (buf) ✅
Passes an immutable char pointer (argv[1]) ✅
Passes a number (sizeof(buf)) ✅

● The pre/postconditions may be written in comments, but they are not present in the actual code, because the C language
does not have a mechanism for them to be expressed

● Consequently: the compiler is unaware of what you’re trying to do

* A static analyzer may be able to figure out strncpy’s behavior from looking at the code, but there is no way to figure out everything

Type systems

● The types of a programming language are the nouns of a spoken language

○ When you talk, what do you talk about?

● C type system: numbers, pointers, structs… not much else

○ Extremely simple: can learn most of the C language in half a quarter of CS 107

○ Simple != easy

strchr definition:
char *strchr(const char *s, int c);

Takes an immutable char pointer and a
character(/number??) to look for
Returns a char pointer

strchr usage:
char *message = strchr(argv[1], 'a');
printf("%s\n", message);

Passes a char* ✅
Passes a char ✅
Receives a char* ✅, prints it 💯

● The pre/postconditions may be written in comments, but they are not present in the actual code, because the C language
does not have a mechanism for them to be expressed

● Consequently: the compiler is unaware of what you’re trying to do

* A static analyzer may be able to figure out that strchr might return NULL from looking at the code, but there is no way to figure out
everything

Are there better type systems that we can use to specify
our preconditions/postconditions in the code?

(implication: if the compiler can understand your pre/postconditions, it can verify that
they are met)

Topic of next week! (Meet Rust 🦀)

Takeaways

● If you are writing C/C++, you should absolutely be running sanitizers, fuzzers,
and static analyzers

○ You should understand the limitations of these tools, but…

○ Just because they are limited does not mean they aren’t helpful

● If you are in a position to use a language with a better type system, you
should!

For next week

● Take 10 minutes to look through this buggy vector implementation: https://
web.stanford.edu/class/cs110l/lecture-notes/lecture-03/

● Try to find as many bugs as you can

https://web.stanford.edu/class/cs110l/lecture-notes/lecture-03/
https://web.stanford.edu/class/cs110l/lecture-notes/lecture-03/

