Welcome to CS 110L ¥

Ryan Eberhardt and Julio Ballista

March 30, 2021

Z00m norms

e Please enable video (if you have one)
e Try to mute yourself when not speaking
e Feel free to just unmute and start talking if you have a question

Who are we?

Julio Ballista

Junior in CS (2022!) (Systems track)

Interested in operating systems, systems architecture / design, security
| took 110L last year where | learned Rust for the first time

I've been jump roping since Frosh year (Stanford Jump Rope :D)

Got into rhythm games this pandemic

Ryan Eberhardt

e (Coterm focused on systems and security
e | have two cats
e | love doing pottery, photography, and listening to music

HUGE thanks to Will Crichton for course material, advice, and feedback.

Also thanks to Armin Namavari for developing this class last spring!

Who are you?

Who are you?

Fun and quirky community of about 35 students (including auditors)

Who are you?

Why are you taking this class?

I've been really interested in learning Rust recently, and hearing that there was a
class that helps to teach it this quarter was perfect timing.

| want exposure to Rust and to understand common safety and robustness pitfalls.
I am currently considering the CS systems track, so | think it is pretty much
required | learn about safety in systems programming.

I'm interested in getting experience with Rust, and in brushing up on / extending
my 110 knowledge since | took it in Spring 2020 when | was still getting used to
virtual learning. The projects sound really cool!

Who are you?

Have you heard anything about Rust before?

e Most people: “Nope.”

e Note: If you have prior Rust experience (three people), you will likely have seen
most of the content from the first half of the class. (Feel free to stay for the second
half!)

Who are you?

Tell us something about you that has nothing to do with this class.
11 responses
| love lego
| have a twin sister!
| love coming up with puns and over the past couple months have really loved making polymer clay jewelry!
| like playing Kerbal Space Program!
One of my hobbies is language acquisition!
| love ballroom dance!
I'm an aviation geek and love to go plane spotting with friends. | just went over break!
| can make really good tomato soup.

| can't sing to save my life.

Say hi on #social!
(Let us know if you need a Slack invite.)

Why are we here?

“Convert a String to Uppercase in C,” taken VERBATIM from

#include <stdio.h>
#include <string.h>
int main() {
char s[100];
int i;
printf("\nEnter a string : ");
gets(s);
for (i = 0; s[i]!="\0"; i++) {
if(s[i] >= 'a' && s[i] <= '
s[i] = s[i] -32;

z') {

}
}

printf("\nString in Upper Case = %s", s);
return 0;

https://www.tutorialspoint.com/convert-a-string-to-uppercase-in-c

Anatomy of a Stack Frame

High addresses
; push call arguments, in reverse ...previous stuff ...
push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer
...do stuff...
mov esp, ebp
pop ebp ; restore old call frame
ret ; return)
Local variables
add esp, 12 ; remove call arguments from frame
Low addresses

From https://en.wikipedia.org/wiki/X86_calling_conventions#cdecl

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer

...do stuff...

Low addresses

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer
...do stuff...

Low addresses

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee:
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame

...do stuff...

Low addresses

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...
push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’

callee:

push ebp ; save old call frame

mov ebp, esp ; initialize new call frame

...do stuff...

mov esp, ebp

pop ebp ; restore old call frame

ret ; return

g

Low addresses

Morris Worm (circa 1988)

int main(int argc, char *argv[]) {
char line[512];
struct sockaddr in sinj;
int i, p[2], pid, status;
i = sizeof (sin);

if (getpeermage(0, &sin, &i) < 0) fatal(argv[0], "getpeername");
if== NULL) exit(1);
edraT *sp = line;

regi

if ((pid = fork()) == 0) {
close(p[0]);
if (p[l] != 1) {
dup2(p[l], 1);
close(p[1l]);
}
execv("/usr/ucb/finger", av);
_exit(1l);
}

“Convert a String to Uppercase in C,” circa 2021

#include <stdio.h>
#include <string.h>
int main() {

char s[100];

int i;
0 Li-R “\nEnter a string : ");
QL s[i1!="\0"; i++) {
if(s[i] >= 'a' && s[i] <= "z'") {
s[i] = s[i] -32;
}

}

printf("\nString in Upper Case = %s", s);
return 0;

Okay, well, I'm smarter than that.

Professional engineers don’t make such silly mistakes, right?

Comprehensive Experimental Analyses of Automotive Attack Surfaces

Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, and Stefan Savage
University of California, San Diego

Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno
University of Washington

Abstract
Modern automobiles are pervasively computerized, and
hence potentially vulnerable to attack. However, while
previous research has shown that the internal networks
within some modern cars are insecure, the associated
threat model —requiring prior physical access— has

This situation suggests a significant gap in knowledge,
and one with considerable practical import. To what ex-
tent are external attacks possible, to what extent are they
practical, and what vectors represent the greatest risks?
Is the etiology of such vulnerabilities the same as for
desktop software and can we think of defense in the same

“Like many modern cars, our car’s cellular capabilities facilitate a variety of safety and
convenience features (e.q. the car can automatically call for help if it detects a crash).
However, long-range communication channels also offer an obvious target for potential
attackers...”

The car has a 3G modem, but 3G service isn’t available everywhere (this was especially
true in 2011, when the paper was written). As such, the car also has an analog audio
modem with an associated telephone number! “To synthesize a digital channel in this

environment, the manufacturer uses Airbiquity’s agLink software modem to covert
between analog waveforms and digital bits.”

“As mentioned earlier, the aqLink code explicitly supports packet sizes up to 1024 bytes.
However, the custom code that glues aqLink to the Command program assumes that
packets will never exceed 100 bytes or so (presumably since well-formatted command
messages are always smaller)”

“We also found that the entire attack can be implemented in a completely blind
fashion — without any capacity to listen to the car’s responses. Demonstrating this, we
encoded an audio file with the modulated post-authentication exploit payload and
loaded that file onto an iPod. By manually dialing our car on an office phone and then
playing this “song” into the phone’s microphone, we are able to achieve the same
results and compromise the car.”

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

Umm... Well | just won’t work for a car company?

Zc
s€

Hl
cC
re

Is
nc

ODNETSFECLIRITY News Features Expert analvsis Reviews Events Whitepapers Industrv news Newsletters

The A Reaister’

THEVERGE TECH ~ SCIENCE -~ ENTERTAINMENT - MORE

B HELPNETSECURITY News Features Expertanalysis Reviews Events Whitepapers Industry news Newsletters

Zoom |
securit

How to
concer
recogn

Is remc
normal

While n
compa
data, ol

Most fi
challen
UCaas,

Mozilla
COoVID-
project

Are you
ofacn
Check |

Vulnerz
at heall
open d

Eanturad I cEaersee U

T Apple releases iPhone, iPad and Watch security
patches for zero-day bug under active attack

Login

Zack Whittaker @zackwhittakfr / 1:45 PM PDT « March 27, 2021

SearchQ

TC Early Stage
2021

Startups
Videos
Audio
Newsletters
Extra Crunch
The TC List

Advertise

Fy/antce

B CVE - Search Results X

© & https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow

N,

Common Vulnerabilities and Exposures

NVD

Go to for:

CVSS Scores
CPE Info
Advanced Search

Search CVE List Download CVE Data Feeds Request CVE IDs

TOTAL CVE Entries: 133423

Update a CVE Entry

Search Results

’There are 10635 CVE entries that match your search.

Name
CVE-2020-9760

CVE-2020-9552
CVE-2020-9535
CVE-2020-9534
CVE-2020-9366

CVE-2020-9067

CVE-2020-8962

CVE-2020-8955

CVE-2020-8874

CVE-2020-8608
CVE-2020-8597

Description

An issue was discovered in WeeChat before 2.7.1 (0.3.4 to 2.7 are affected). When a new IRC message 005 is received with longer nick prefixes, a buffer overflow and
possibly a crash can happen when a new mode is set for a nick.

Adobe Bridge versions 10.0 have a heap-based buffer overflow vulnerability. Successful exploitation could lead to arbitrary code execution.
fmwlan.c on D-Link DIR-615]x10 devices has a stack-based buffer overflow via the formWlanSetup_Wizard webpage parameter when f_radius_ip1 is malformed.
fmwlan.c on D-Link DIR-615]x10 devices has a stack-based buffer overflow via the formWIlanSetup webpage parameter when f_radius_ip1 is malformed.

A buffer overflow was found in the way GNU Screen before 4.8.0 treated the special escape OSQ 49. Specially crafted output, or a special program, could corrupt
memory and crash Screen or possibly have unspecified other impact.

There is a buffer overflow vulnerability in some Huawei products. The vulnerability can be exploited by an attacker to perform remote code execution on the affected
products when the affected product functions as an optical line terminal (OLT). Affected product versions include:SmartAX MA5600T versions V800OR013C10,
V800R015C00, V80OOR015C10, VBOOR017C00, VBOOR017C10, VBOOR018C00, VBOOR018C10; SmartAX MA5800 versions V100R017C00, V100R017C10, V100R018C00,
V100R018C10, V100R019C10; SmartAX EA5800 versions V100R018C00, V100R018C10, V100R019C10.

A stack-based buffer overflow was found on the D-Link DIR-842 REVC with firmware v3.13B09 HOTFIX due to the use of strcpy for LOGINPASSWORD when handling a
POST request to the /MTFWU endpoint.

irc_mode_channel_update in plugins/irc/irc-mode.c in WeeChat through 2.7 allows remote attackers to cause a denial of service (buffer overflow and application crash)
or possibly have unspecified other impact via a malformed IRC message 324 (channel mode).

This vulnerability allows local attackers to escalate privileges on affected installations of Parallels Desktop 15.1.2-47123. An attacker must first obtain the ability to
execute high-privileged code on the target guest system in order to exploit this vulnerability. The specific flaw exists within the xHCI component. The issue results from
the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to
escalate privileges and execute code in the context of the hypervisor. Was ZDI-CAN-10032.

In libslirp 4.1.0, as used in QEMU 4.2.0, tcp_subr.c misuses snprintf return values, leading to a buffer overflow in later code.

eap.c in pppd in ppp 2.4.2 through 2.4.8 has an rhostname buffer overflow in the eap_request and eap_response functions.

void ares_create_query(const char *name, int dnsclass)

unsigned char *q;
const char *p;

* Compute the length of the encoded name so we can check buflen. *
int len = 0;
for (p = name; *p; p++)

{

if ()p == "\\' && *(p + 1) != 0)

ptt;

len++;
}
#* If there are n periods in the name, there are n + 1 lab , and
* thus n + 1 length fie ty or with a
* i So ad or ends with a period.
*

if (*name && *(p - 1) != ".") | fa]se if name ends with \.
len++;

#* +1 for dnsclass below #*
q = malloc(len + 1);

while (*name)

{
q++ = / ... label length, calculation omitted for brevity *
for (p = name; *p && *p != '.'; p++)
{
if (*p == "\\' & *(p + 1) != 0)
pt+;
*qtt+ = *p;
}
* Go to the next label and repeat, unless we hit the end. *
if (1#p)
break;
name = p + 1;
}

|*q = dnsclass & Oxff;| overflows one byte

¥

One-byte overflow in Chrome OS:
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

Spot the overflow

char buffer[128];

int bytesToCopy = packet.length;
if (bytesToCopy < 128) {

strncpy(buffer, packet.data, bytesToCopy);
}

Spot the overflow

char buffer[128];

int bytesToCopy = packet.length;

if (bytesToCopy < 128) { ¢/ Proper bounds check
strncpy(buffer, packet.data, bytesToCopy);

}

/ Use of strncpy (avoiding unsafe strcpy)

Spot the overflow

Signed har buffer[128];
pytesToCopy = packet.length;

1f (bytesToCopy < 128) {

strncpy(buffer, packet.data,(bytesToCopy))

Cast to size_t (unsigned)

}

How can we find/prevent these

problems?

This is the topic of this whole class :)

Dynamic analysis

e Run the program, watch what it does, and look for problematic behavior
e (Can find problems, but only if the program exhibits problematic behavior on
the inputs you use to test

“Convert a String to Uppercase in C”

#include <stdio.h>
#include <string.h>
int main() {
char s[100];
int i;
printf("\nEnter a string : ");
gets(s);
for (i = 0; s[i]!="\0"; i++) {
if(s[i] >= 'a' && s[i] <= '
s[i] = s[i] -32;
}

z') {

}
printf("\nString in Upper Case = %s", s);
return 0;

Dynamic analysis

e Run the program, watch what it does, and look for problematic behavior

e (Can find problems, but only if the program exhibits problematic behavior on
the inputs you use to test

e Commonly combined with techniques to run the program with lots of
different test inputs (e.g. fuzzing), yet this still can’t give us any assurances

that code is bug-free

Static analysis

e Read the source code and find problematic parts
e Easy in simple cases (e.g. you can raise an error if anyone ever calls gets())
e Impossible in the general case (Halting Problem)

Static analysis and the Halting Problem

int main() {
// this is not valid syntax but just ignore that
inta=b=c=d=e =°f = rand(Q);
while (true) {

=b * c;

Q ~hd® N Q

1f (a==188 b =28 c=38&& d=48& e =58 f ==06) {
// exit
return 0;

Static analysis and the Halting Problem

int main() {
// this is not valid syntax but just ignore that
inta=b=c=d=e =°f = rand(Q);
while (true) {

=b * c;

Q ~hd® N Q

1f (a==188 b =28 c =388 d=48& e =58 f ==06) {
// segfault
(int)(NULL) = 0;

Static analysis

Read the source code and find problematic parts

Easy in simple cases (e.g. you can raise an error if anyone ever calls gets())
Impossible in the general case (Halting Problem)

Are there ways that we can make static analysis more tractable/helpful?
(Topic of Thursday’s lecture and next week)

About CS 110L ¥

Course outline

e Key question: How can we prevent common mistakes in systems
programming?

This is not a Rust class, although almost all of our programming will be
done in Rust

How do we find and prevent common mistakes in C/C++?

How does Rust’s type system prevent common memory safety errors?
How do you architect good code?

Avoiding multiprocessing pitfalls

Avoiding multithreading pitfalls

Putting all of this into practice: Networked systems

Course outline

e Corequisite: CS 110
e Pass/fall

e You will get out what you put in
e Components:

e Lecture

e Weekly exercises (40%)

e Two projects (40%)

e Participation (20%)

Projects

e Project 1: Mini GDB

e Project 2: High-performance web server

e Functionality grading only

e The Rust compiler will be your interactive style grader!

e These projects are intended to give you additional experience in building real
systems, while having to think about some of the safety issues we’re
discussing

e Have a different idea? Let us know!

Exercises

e Each week, we’ll give you some small programming problems to reinforce
the week’s lecture material
e Alternatively: Write a blog post about something you’re learning in the class

e Expected time: 1-3 hours
e In addition, you’ll be asked to complete an anonymous survey about how the
class is going and how we can improve

Work for Thursday

Before class, spend 10 minutes trying to spot as many bugs as you can find in
this code snippet:
https://web.stanford.edu/class/cs110l/lecture-notes/lecture-02/

(From the course website, click “Lecture notes” under Lecture 2)

https://web.stanford.edu/class/cs110l/lecture-notes/lecture-02/

