
Welcome to CS 110L 👋

Ryan Eberhardt and Julio Ballista

March 30, 2021



Zoom norms

● Please enable video (if you have one)

● Try to mute yourself when not speaking

● Feel free to just unmute and start talking if you have a question



Who are we?



Julio Ballista 

● Junior in CS (2022!) (Systems track)

● Interested in operating systems, systems architecture / design, security 

● I took 110L last year where I learned Rust for the first time

● I've been jump roping since Frosh year (Stanford Jump Rope :D) 

● Got into rhythm games this pandemic 



Ryan Eberhardt

● Coterm focused on systems and security

● I have two cats

● I love doing pottery, photography, and listening to music 



HUGE thanks to Will Crichton for course material, advice, and feedback.

Also thanks to Armin Namavari for developing this class last spring!



Who are you?



Who are you?

Fun and quirky community of about 35 students (including auditors)



Who are you?

Why are you taking this class?

● I've been really interested in learning Rust recently, and hearing that there was a 
class that helps to teach it this quarter was perfect timing.

● I want exposure to Rust and to understand common safety and robustness pitfalls.
● I am currently considering the CS systems track, so I think it is pretty much 

required I learn about safety in systems programming.
● I'm interested in getting experience with Rust, and in brushing up on / extending 

my 110 knowledge since I took it in Spring 2020 when I was still getting used to 
virtual learning. The projects sound really cool!



Who are you?

Have you heard anything about Rust before?

● Most people: “Nope.”
● Note: If you have prior Rust experience (three people), you will likely have seen 

most of the content from the first half of the class. (Feel free to stay for the second 
half!)



Who are you?

Say hi on #social! 
(Let us know if you need a Slack invite.)



Why are we here?



“Convert a String to Uppercase in C,” taken VERBATIM from Tutorials Point

#include <stdio.h>
#include <string.h>
int main() {
   char s[100];
   int i;
   printf("\nEnter a string :  ");
   gets(s);
   for (i = 0; s[i]!='\0'; i++) {
      if(s[i] >= 'a' && s[i] <= 'z') {
         s[i] = s[i] -32;
      }
   }
   printf("\nString in Upper Case = %s", s);
   return 0;
}

https://www.tutorialspoint.com/convert-a-string-to-uppercase-in-c


Anatomy of a Stack Frame

… previous stuff …

Function parameters

Return address

Saved base pointer

Local variables

High addresses

Low addresses

; push call arguments, in reverse
push    3
push    2
push    1
call    callee    ; call subroutine ‘callee'

    callee:
    push    ebp       ; save old call frame
    mov     ebp, esp  ; initialize new call frame
    ...do stuff...
    mov     esp, ebp
    pop     ebp       ; restore old call frame
    ret               ; return

add     esp, 12  ; remove call arguments from frame

From https://en.wikipedia.org/wiki/X86_calling_conventions#cdecl



Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push    3
push    2
push    1
call    callee    ; call subroutine ‘callee'

    callee:
    push    ebp       ; save old call frame
    mov     ebp, esp  ; initialize new call frame
    ...do stuff...

Saved base pointer

Return address

Local variables



Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push    3
push    2
push    1
call    callee    ; call subroutine ‘callee'

    callee:
    push    ebp       ; save old call frame
    mov     ebp, esp  ; initialize new call frame
    ...do stuff...

Saved base pointer

Return address

Local variables



Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push    3
push    2
push    1
call    callee    ; call subroutine ‘callee'

    callee:
    push    ebp       ; save old call frame
    mov     ebp, esp  ; initialize new call frame
    ...do stuff...

Saved base pointer

Return address

Local variables



Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push    3
push    2
push    1
call    callee    ; call subroutine ‘callee'

    callee:
    push    ebp       ; save old call frame
    mov     ebp, esp  ; initialize new call frame
    ...do stuff...

Saved base pointer

Return address

Local variables

    mov     esp, ebp
    pop     ebp       ; restore old call frame
    ret               ; return

💣😓



Morris Worm (circa 1988)
int main(int argc, char *argv[]) {
  char line[512];
  struct sockaddr_in sin;
  int i, p[2], pid, status;
  i = sizeof (sin);
  if (getpeername(0, &sin, &i) < 0) fatal(argv[0], "getpeername");
  if (gets(line) == NULL) exit(1);
  register char *sp = line;
  ...
  if ((pid = fork()) == 0) {
    close(p[0]);
    if (p[1] != 1) {
      dup2(p[1], 1);
      close(p[1]);
    }
    execv("/usr/ucb/finger", av);
    _exit(1);
  }
  ...
}



“Convert a String to Uppercase in C,” circa 2021

#include <stdio.h>
#include <string.h>
int main() {
   char s[100];
   int i;
   printf("\nEnter a string :  ");
   gets(s);
   for (i = 0; s[i]!='\0'; i++) {
      if(s[i] >= 'a' && s[i] <= 'z') {
         s[i] = s[i] -32;
      }
   }
   printf("\nString in Upper Case = %s", s);
   return 0;
}



Okay, well, I’m smarter than that.


Professional engineers don’t make such silly mistakes, right?





“Like many modern cars, our car’s cellular capabilities facilitate a variety of safety and 
convenience features (e.g. the car can automatically call for help if it detects a crash). 

However, long-range communication channels also offer an obvious target for potential 
attackers…”

The car has a 3G modem, but 3G service isn’t available everywhere (this was especially 
true in 2011, when the paper was written). As such, the car also has an analog audio 
modem with an associated telephone number! “To synthesize a digital channel in this 

environment, the manufacturer uses Airbiquity’s aqLink software modem to covert 
between analog waveforms and digital bits.”



“As mentioned earlier, the aqLink code explicitly supports packet sizes up to 1024 bytes. 
However, the custom code that glues aqLink to the Command program assumes that 

packets will never exceed 100 bytes or so (presumably since well-formatted command 
messages are always smaller)”

“We  also  found  that  the  entire  attack  can  be  implemented  in  a  completely  blind  
fashion — without  any capacity to listen to the car’s responses. Demonstrating this,  we  
encoded  an  audio  file  with  the  modulated post-authentication exploit payload and 

loaded that file onto an iPod.  By manually dialing our car on an office phone  and  then  
playing  this  “song”  into  the  phone’s microphone, we are able to achieve the same 

results and compromise the car.”

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

http://www.autosec.org/pubs/cars-usenixsec2011.pdf


Well I just won’t work for a car company?Umm…







One-byte overflow in Chrome OS: 
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html


Spot the overflow

char buffer[128];
int bytesToCopy = packet.length;
if (bytesToCopy < 128) {
    strncpy(buffer, packet.data, bytesToCopy);
}



Spot the overflow

char buffer[128];
int bytesToCopy = packet.length;
if (bytesToCopy < 128) {
    strncpy(buffer, packet.data, bytesToCopy);
}

Proper bounds check

Use of strncpy (avoiding unsafe strcpy)



Spot the overflow

char buffer[128];
int bytesToCopy = packet.length;
if (bytesToCopy < 128) {
    strncpy(buffer, packet.data, bytesToCopy);
}

Signed

Cast to size_t (unsigned)



How can we find/prevent these 
problems?

This is the topic of this whole class :)



Dynamic analysis

● Run the program, watch what it does, and look for problematic behavior

● Can find problems, but only if the program exhibits problematic behavior on 

the inputs you use to test



“Convert a String to Uppercase in C”

#include <stdio.h>
#include <string.h>
int main() {
   char s[100];
   int i;
   printf("\nEnter a string :  ");
   gets(s);
   for (i = 0; s[i]!='\0'; i++) {
      if(s[i] >= 'a' && s[i] <= 'z') {
         s[i] = s[i] -32;
      }
   }
   printf("\nString in Upper Case = %s", s);
   return 0;
}



Dynamic analysis

● Run the program, watch what it does, and look for problematic behavior

● Can find problems, but only if the program exhibits problematic behavior on 

the inputs you use to test

● Commonly combined with techniques to run the program with lots of 

different test inputs (e.g. fuzzing), yet this still can’t give us any assurances 
that code is bug-free



Static analysis

● Read the source code and find problematic parts

● Easy in simple cases (e.g. you can raise an error if anyone ever calls gets())

● Impossible in the general case (Halting Problem)



Static analysis and the Halting Problem
int main() {
    // this is not valid syntax but just ignore that
    int a = b = c = d = e = f = rand();
    while (true) {
        a = b * c;
        c = a;
        e = f * 2;
        f = a + b + c;
        d = b / c;

        if (a == 1 && b == 2 && c == 3 && d == 4 && e == 5 && f == 6) {
            // exit
            return 0;
        }
    }
}



Static analysis and the Halting Problem
int main() {
    // this is not valid syntax but just ignore that
    int a = b = c = d = e = f = rand();
    while (true) {
        a = b * c;
        c = a;
        e = f * 2;
        f = a + b + c;
        d = b / c;

        if (a == 1 && b == 2 && c == 3 && d == 4 && e == 5 && f == 6) {
            // segfault
            *(int*)(NULL) = 0;
        }
    }
}



Static analysis

● Read the source code and find problematic parts

● Easy in simple cases (e.g. you can raise an error if anyone ever calls gets())

● Impossible in the general case (Halting Problem)

● Are there ways that we can make static analysis more tractable/helpful? 

(Topic of Thursday’s lecture and next week)



About CS 110L 👋



Course outline

● Key question: How can we prevent common mistakes in systems 
programming?

● This is not a Rust class, although almost all of our programming will be 

done in Rust

● How do we find and prevent common mistakes in C/C++?

● How does Rust’s type system prevent common memory safety errors?

● How do you architect good code?

● Avoiding multiprocessing pitfalls

● Avoiding multithreading pitfalls

● Putting all of this into practice: Networked systems



Course outline

● Corequisite: CS 110

● Pass/fail


● You will get out what you put in

● Components:


● Lecture

● Weekly exercises (40%)

● Two projects (40%)

● Participation (20%)



Projects

● Project 1: Mini GDB

● Project 2: High-performance web server

● Functionality grading only


● The Rust compiler will be your interactive style grader!

● These projects are intended to give you additional experience in building real 

systems, while having to think about some of the safety issues we’re 
discussing


● Have a different idea? Let us know!



Exercises

● Each week, we’ll give you some small programming problems to reinforce 
the week’s lecture material


● Alternatively: Write a blog post about something you’re learning in the class

● Expected time: 1-3 hours

● In addition, you’ll be asked to complete an anonymous survey about how the 

class is going and how we can improve



Work for Thursday

Before class, spend 10 minutes trying to spot as many bugs as you can find in 
this code snippet: 
https://web.stanford.edu/class/cs110l/lecture-notes/lecture-02/ 
(From the course website, click “Lecture notes” under Lecture 2)

https://web.stanford.edu/class/cs110l/lecture-notes/lecture-02/

