
Reflecting on Rust

Ryan Eberhardt and Armin Namavari

June 4, 2020

Logistics

! This is our last lecture together 😢

○ We are so, so proud of everything you have learned this quarter, and we

hope you are too!

! Next Tuesday, will have a guest lecture from Sergio Benitez

○ Please come!

! Please fill out Week 8 survey if you haven’t already (link in Slack)

! Project 2 due Wednesday, but we will accept it until Saturday with no penalty,

and we are happy to give further accommodations if you aren’t graduating

Why are we here?

! What was the point of this class?

○ Learn about common safety issues in designing/building systems

○ Learn about how people are responding to those problems

○ Get first-hand experience with those responses

! This lecture will focus on Rust in particular

○ Why do we care about Rust?

○ Why is Rust effective and what can we learn from its design?

○ How can we work to write safer C++?

Why do we care about Rust?

Garbage
collection

Manual memory
management

Fast Safe,
simple

???

Can we have
both??

! Manual memory management has led to countless security vulnerabilities (70% of Chrome
security bugs are memory safety issues)

! Garbage collection introduces unpredictable latency and unacceptable overhead for many
applications

! Is there some way we get the benefits of both approaches?

○ Rust seems to do this for us! In this lecture, we’ll look at why it works, and how we might

be able to apply lessons from Rust to other languages

https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety

Why is Rust effective?

Why is Rust effective?

! Using a strong type system

! Safety by default

Type systems

Why is C frustrating?
Imagine you are a construction worker, and your boss tells you to connect the gas pipe in the basement to the street's
gas main. You go downstairs, and find that there's a glitch; this house doesn't *have* a basement. Perhaps you decide to
do nothing, or perhaps you decide to whimsically interpret your instruction by attaching the gas main to some other
nearby fixture, perhaps the neighbor's air intake. Either way, suppose you report back to your boss that you're done.

KWABOOM! When the dust settles from the explosion, you'd be guilty of criminal negligence.

Yet this is exactly what happens in many computer languages. In C/C++, the programmer (boss) can write
"house"[-1] * 37. It's not clear what was intended, but clearly some mistake has been made. It would certainly be
possible for the language (the worker) to report it, but what does C/C++ do?

• It finds some non-intuitive interpretation of "house"[-1] (one which may vary each time the program runs!, and
which can't be predicted by the programmer),

• then it grabs a series of bits from some place dictated by the wacky interpretation,
• it blithely assumes that these bits are meant to be a number (not even a character),
• it multiplies that practically-random number by 37, and
• then reports the result, all without any hint of a problem. https://www.radford.edu/ibarland/Manifestoes/whyC++isBad.shtml

https://www.radford.edu/ibarland/Manifestoes/whyC++isBad.shtml

Why is C frustrating?

typedef struct vector {
 size_t length;
 size_t capacity;
 size_t elem_size;
 void *data;
} vector;

Why is C frustrating?
int prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5);

Why is C frustrating?

struct sockaddr {
 unsigned short sa_family;
 char sa_data[14];
};

struct sockaddr_in {
 short int sin_family;
 unsigned short int sin_port;
 struct in_addr sin_addr;
 unsigned char sin_zero[8];
};

struct sockaddr_in6 {
 sa_family_t sin6_family; /* AF_INET6 */
 in_port_t sin6_port; /* port number */
 uint32_t sin6_flowinfo; /* IPv6 flow information */
 struct in6_addr sin6_addr; /* IPv6 address */
 uint32_t sin6_scope_id; /* Scope ID (new in 2.4) */
};

16 bytes

16 bytes 16 bytes

Why is C frustrating?

Why is C frustrating?

! C is designed and used by brilliant people. What is the reason for the madness?

! C is tightly coupled to the machine executing the code

○ Machines don’t have notions of vectors, generic types, or polymorphism

○ Prctl is the way it is because of how the syscall call/return mechanism passes

arguments through registers, not because it’s convenient for anyone to think
about in that way

○ C code is often the way it is because it maps well to how computers work

! Side note: When introduced, C was actually a big advancement in that it targeted

an abstract machine model, so C programmers don’t need to think about the
specifics of the processors they are running on

○ However, it is tightly coupled to that abstract machine model

https://queue.acm.org/detail.cfm?id=3212479

Rust’s perspective

! By contrast, Rust is designed to match how programmers think

! Want a vector containing strings? Just create one and add the desired

strings!

! No need to think about allocating memory, casting void* pointers

appropriately, passing the correct number of bytes each element occupies, or
freeing memory

Type systems

! Types are the unit of dialogue in a language

○ When you talk in a language, what do you talk about?

! A compiler uses types to figure out:

○ What are you trying to say?

○ Does what you’re saying make sense?

Type systems

! C’s type system is oriented around primitives, structs, and pointers

○ When you write "house"[-1] * 37, the compiler figures out what you’re

saying in terms of pointers and verifies that it makes sense

! C has a very small language surface, which is nice

! However, because of the limited constructs it can express, you must do a lot of

work to translate ideas into C code

! Similarly, when reading C code, it’s difficult to build a mental model of what the

authors were thinking when writing the code

○ E.g. when reading a codebase, it may take a while to figure out where the

authors intended for some memory to be freed

○ Consequently, the compiler has very little understanding of the intent of a

programmer

Type systems

! Rust’s type system tries to encode high-level ideas into the language

○ When you write code, there is a notion of ownership in the code
○ When you have a vector, there is a notion of the type of elements in the vector

○ When you have a type, there is a notion of whether it’s safe to share values of

that type between threads (Sync/Send)

! Because we express high-level ideas in the language, the compiler can understand

what we’re trying to do, and can warn us when we do something dumb

! By the same token, other programmers can more easily understand what is going

on from reading your code

! This is about much more than just memory safety! This is why Rust was designed

with powerful macros: We can extend the language with new ideas that can be
expressed and checked at compile time

Takeaways for systems design

! You may never design a programming language, but you will very likely need to design
or implement an API

○ E.g. creating a software library, or implementing a service over HTTP

! Good API design is very hard and has a lot of overlap with good language design

! Design from the client’s perspective with the implementation in mind, not the other way

around

○ If you expose a complex interface, every client will need to deal with that complexity

○ If you expose a simple interface with a complex implementation, it may be hard to

build, but you can do it once and move on

○ It’s so tempting to build an API that directly maps to the implementation, since

that’s what you understand as an implementor. But take extra time to consider what
“types” a client thinks in terms of!

Safety by default

Safety by default

! Rust safety features are a core part of the language

! You can opt-out using unsafe, but it’s discouraged and sometimes more

trouble than it’s worth

! C++ has many safety features, but they are opt-in

○ Worse, even the “safe” STL classes have unsafe parts that are easy to
accidentally use

Takeaways for systems design

! Design systems that are harder to misuse than they are to use correctly

! As we saw in the information security lecture, sometimes safety by default

isn’t good enough (e.g. if disabling safety features makes life significantly
easier for a user)

Rust is not a panacea!

Rust is not a panacea!

! I think you’ve learned this from your assignments, but it’s worth stating
explicitly

Valid C programs

Valid Rust programs Programs with
memory errors

Buggy programs

Invalid Rust program
with no memory errors

Buggy Rust
program

Rust is not a panacea!

! I think you’ve learned this from your assignments, but it’s worth stating
explicitly

! Additionally, some Rust code uses unsafe. If you use libraries that have
incorrect usage of unsafe, your code will also be susceptible to
vulnerabilities

! We still have a ways to go in making the language fast and usable

Safety in C++

You still need to learn C/C++

! C and C++ suck, but in many cases, we don’t have a choice

! There is lots of existing code that must be supported

! Rewriting projects introduces bugs (and sometimes reintroduces old, long-

fixed bugs)

○ I have never heard of a real-life project where this wasn’t the case

○ Mozilla’s experience rewriting Firefox CSS engine in Rust

! People are still writing in Fortran… There’s no way we’re ditching C/C++ any
time in the near future

https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/

Applying Rust to C++

! In many ways, Rust codifies best practices that you should be doing in other
languages anyways

! Writing good code may not be as natural as it is in Rust, but many of the
same ideas can be applied

! There is a ton of material in the next few slides. We don’t expect you to
understand it all; we just want you to know it exists so that you can look it up
when you recognize a need to use it

Allocating/freeing memory

! The traditional (and error-prone) way to initialize objects is to have functions like
vec_init that allocate memory and vec_destroy that free associated resources

! RAII is a horrible name for the practice of acquiring resources (e.g. allocating
memory) in the constructor of an object and freeing the memory in the destructor

○ The destructor is called when the object goes out of scope

○ No memory leaks or double frees!

○ Most C++ STL classes are RAII (e.g. vector manages the memory allocations

for you)

○ Applies to more than just memory (e.g. lock_guard releases the lock when it

goes out of scope)

Ownership

! When RAII is used, we can talk about ownership similar to Rust. A variable “owns” the value inside

! The = operator copies by default

○ You may have encountered this in the form of unexpected performance hits

! You can use std::move() to indicate you would like to move instead of copying

○ E.g. string val2 = move(val1);

○ Note that the compiler will not complain if you subsequently use val1. Use linters like clang-tidy

to catch mistakes like this

! You can “borrow” references to a value of type T by assigning to variables/parameters of type &T

○ Not as explicit as Rust about when references are being borrowed, but the same thing is
happening

○ Beware: Unlike Rust, there is no borrow checker doing lifetime analysis, so dangling pointers are
still a thing. 36.1% of Chrome high-severity security bugs (52% of memory-related security
bugs) caused by use-after-free!

https://clang.llvm.org/extra/clang-tidy/checks/bugprone-use-after-move.html

Smart pointers

! Similar to Rust, C++ objects are stack-allocated by default

! Heap allocation can be done with new and delete, but this is error-prone

! Smart pointers are wrapper objects that automatically manage memory allocations

for you

! std::unique_ptr is like Box: single owner, ownership can be transferred (can also

borrow references, as long as owner lives long enough)

○ unique_ptr<string> s = make_unique<string>("hello world");  

cout << *s << endl;  
unique_ptr<string> s2 = move(s);  
cout << *s2 << endl;  
(cplayground)

https://cplayground.com/?p=finch-duck-pigeon

Smart pointers

! std::shared_ptr is like Rc: multiple owners (via reference counting)

○ shared_ptr<string> s = make_shared<string>("hello world");  

cout << *s << endl;  
shared_ptr<string> s2 = s; // makes a copy, inc refcount  
cout << *s2 << endl;  
(cplayground)

https://cplayground.com/?p=lyrebird-pangolin-horse

Arrays/vectors

! std::vector is like Vec (allocates a growable vector on the heap), except
the [] operator does not do bounds checks! Use the .at(i) method to get
an element with bounds checking

! std::array encapsulates a C array with its length

○ Never need to worry about remembering to pass the proper length

○ Can use the .at(i) method to do bounds checking

○ Automatically frees the array when it goes out of scope

! std::span is like a slice (provides a view into a segment of a vector or array)

Avoiding null dereferences

! C++17 introduced std::optional, which is like Option

○ An optional<T> can either be std::nullopt or a value of type T

○ Example: https://en.cppreference.com/w/cpp/utility/optional#Example

○ Use .value() to get the value inside an optional (an exception is thrown if the

optional is empty)

○ Unfortunately, optional also defines the * and -> operators to get the value inside,

which return uninitialized values if the optional is empty :-/

! C++20 introduces map, and_then, and or_else functions like ones you may have used in

Rust

! Be aware that nullptr is widely used in C++ code, and optional is mostly used in places

where nullptr doesn’t work well

○ Pretty good blog post from Microsoft here

https://en.cppreference.com/w/cpp/utility/optional
https://en.cppreference.com/w/cpp/utility/optional#Example
https://devblogs.microsoft.com/cppblog/stdoptional-how-when-and-why/

Error handling

! There is no consensus on how to do error handling in C++

! Exceptions only work if all of your code is RAII

○ Imagine function A has a try/catch that calls function B, which calls function C, which
calls some other functions

○ One of the functions called by function C throws an unexpected exception

○ Function A catches the exception, but function B is “skipped” and never has a chance

to free the resources

○ In general, exceptions also complicate control flow

! There is a Result-like type being debated, but it hasn’t made it into the standard library yet

! A whole lot of code uses int return values to indicate errors. This has its own problems

○ So many bugs caused by forgetting to check the return value, or from doing it
incorrectly

○ Pain in the butt to do everywhere

Error handling

! Google style guide forbids exceptions: https://google.github.io/styleguide/
cppguide.html#Exceptions

! Mozilla also forbids exceptions in Firefox:

○ https://firefox-source-docs.mozilla.org/code-quality/coding-style/

using_cxx_in_firefox_code.html

○ https://firefox-source-docs.mozilla.org/code-quality/coding-style/

coding_style_cpp.html#error-handling (good read on error handling in general)

! Microsoft doesn’t have a public, general style guide, but their language reference

encourages using exceptions: https://docs.microsoft.com/en-us/cpp/cpp/errors-
and-exception-handling-modern-cpp?view=vs-2019

https://google.github.io/styleguide/cppguide.html#Exceptions
https://google.github.io/styleguide/cppguide.html#Exceptions
https://firefox-source-docs.mozilla.org/code-quality/coding-style/using_cxx_in_firefox_code.html
https://firefox-source-docs.mozilla.org/code-quality/coding-style/using_cxx_in_firefox_code.html
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#error-handling
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#error-handling
https://docs.microsoft.com/en-us/cpp/cpp/errors-and-exception-handling-modern-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/errors-and-exception-handling-modern-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/errors-and-exception-handling-modern-cpp?view=vs-2019

Multithreading

! Use RAII wrappers for synchronization primitives whenever possible (e.g.
lock_guard)

! Use higher-level communication abstractions when applicable (e.g. channels)

https://www.boost.org/doc/libs/1_73_0/libs/fiber/doc/html/fiber/synchronization/channels.html

Use code quality tools!

! These language features help a lot, but they don’t even come close to
addressing C++’s safety issues

○ The language features only help if you use them

○ Trying to use these features in an existing codebase has the same

problem that switching to Rust does: you still have a lot of legacy code
using a lot of antipatterns

! Since C++ does not ensure safety by default, you should use tools to get
better assurances about your code

! These tools typically fall into two categories: static analysis (done on the
source code) and dynamic analysis (done on a running program)

Static analysis

! Limited in what it can say about a program (for fully general programs, you
don’t really know what the program will do until you execute it)

○ Can’t really follow the control flow of a program at a high level

○ Often simply analyze code at a function level

○ Often define a set of rules for safe behavior. Code that violates those rules

might not be unsafe, but the static analysis tools will give you errors
anyways. (Better safe than sorry)

Built-in static analysis

! The compiler already does some amount of static analysis and can be configured to give you different
warnings/errors. You can pass various -W flags to enable certain warnings

! -Wall does not enable all warnings!! It enables “all the warnings about constructions that some users
consider questionable, and that are easy to avoid” (GCC manual)

○ 🙄

! -Wextra adds some extra warning flags (but not all of them)

○ 🙄

! It’s not uncommon to end up with compiler invocations like this: -Wall -Werror -Wextra -Wpedantic -
Wvla -Wextra-semi -Wnull-dereference -Wswitch-enum -fvar-tracking-assignments -Wduplicated-
cond -Wduplicated-branches -rdynamic -Wsuggest-override

! https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#compilers

! https://kristerw.blogspot.com/2017/09/useful-gcc-warning-options-not-enabled.html

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://www.reddit.com/r/cpp/comments/fa0sza/whats_your_favorite_static_code_analyzer_for_c/fivb7t6/
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#compilers
https://kristerw.blogspot.com/2017/09/useful-gcc-warning-options-not-enabled.html

Linting

! A “linter” enforces code style rules

○ Bad style (e.g. deeeeeeply nested code) obscures logic and makes it

much harder to spot bugs

○ Linters also commonly do some basic static analysis to spot obvious

errors (e.g. calling unsafe functions like strcpy, or using a value after it
has been moved out of a variable)

! clang-tidy is one of the most powerful and commonly used linters

https://clang.llvm.org/extra/clang-tidy/

Higher-level static analysis

! More powerful static analyzers attempt to build a graph of the flow of data in
a program, in order to spot buffer overflows, null pointers, integer overflows,
and other common errors

! Pretty good open source project: Cppcheck

! This is an area of active research!

○ E.g. symbolic execution can theoretically audit all control flow paths a
program can take, but it’s currently too slow to be practical for large
programs

http://cppcheck.sourceforge.net/

Dynamic analysis

! Dynamic analysis involves inspecting the behavior of a running program

○ Not comprehensive: can only complain about behavior that it actually

observes (if a program only does something bad 0.00001% of the time,
dynamic analysis may not catch it)

○ However, not many false positives: observed problems are usually real
problems

Sanitizers

! Sanitizers are LLVM compiler plugins that inject extra code to keep track of
what your program is doing and record dangerous behavior

! AddressSanitizer (detects accesses to invalid addresses), LeakSanitizer
(detects memory leaks), MemorySanitizer (detects use of uninitialized
memory), ThreadSanitizer (detects data races and deadlocks), and more

! Example: ThreadSanitizer tracks accesses to data and locks. If two threads
read/write without first acquiring a lock, ThreadSanitizer will log an error

! This is similar to what valgrind does, except the instrumentation is generated
by the compiler instead of being injected just-in-time while the program is
executing

Fuzzers

! Fuzzers are programs that repeatedly provide semi-random input to your
program until it crashes

! AFL and libFuzzer are the two most common fuzzers

○ The former is very useful for end-to-end fuzzing programs that take input

via stdin

○ The latter is built into LLVM and fuzzes individual functions. Faster than

AFL and useful when the code in question doesn’t take input via stdin

Bonus: Test, test, test!

! Automated tests are absolutely critical to any large project

! This is true for any project in any language

! Any time there is a bug, add a test case to protect against regressions

Summary: Using C++

! Use safety features when you can

! Often, you may not be able to use safety features. Even when you do, it’s

easy to screw up

! As a result, it’s important to set up a development environment with

automated code quality tests

○ Not too hard to set up infrastructure that runs a linter, automated test

suite, and sanitizer checks on each commit

! Side note: Automatic code checking is an active area of research! If you’re

interested, we can connect you to people in the CS department that work on
these sorts of things

Closing remarks

Closing remarks

! Thank you for taking this class! It has been such a pleasure having you, and
we hope you’ve enjoyed it

! You all have come so far!

! Please come next Tuesday for our guest speaker — it should be a really
interesting talk

