Rust Macros

Ryan Eberhardt and Armin Namavari

June 2, 2020




Logistics

e (CS110L shouldn’t be your priority right now

e Project 2 is out and we’ve updated our policy on it with regards to current
circumstances — please check out Ryan’s Slack post.

e Please fill out Week 8 survey tonight: https://forms.gle/PEmptvXIx5TdTm4A9



https://forms.gle/PEmptvXLx5TdTm4A9

Today

e [he Plan
o Preliminaries
o Rust Macros
= Declarative Macros
= Procedural Macros (of which there are three kinds)
e (Goal: understand what Rust macros are and how they work.
e This is one of the strangest concepts we’ll cover (yes, maybe even weirder than
nonblocking I/O and futures). Please ask questions.
e Next week we’ll have a guest speaker who will talk about some exciting systems
work he’s done with Rust and how that work draws on the power of Rust macros.
o You may want to review this lecture before next Tuesday!



What are Macros? (in C)

e Basically fancy find-and-replace #define max(a,b) \
e \When found, the macro is replaced ({ _typeof__ (a) _a = (a); \
with some chunk of code __typeof__ (b) _b = (b); \

a> b? a: b; })

e |[t's almost like there aren’t any rules -
(see the example on the bottom)
+ What about; aerine S v
o #define MAX(X, Y) (((X) #define END }
> (Y)) 7 (X) . (Y)) SUB main() BEGIN

printf("Oh, the horror!\n");
END

https://stackoverflow.com/questions/3437404/min-and-max-in-c, https://danielkeep.github.io/tiborm/book/mbe-syn-source-analysis.html



https://stackoverflow.com/questions/3437404/min-and-max-in-c
https://danielkeep.github.io/tlborm/book/mbe-syn-source-analysis.html

Why Macros?

e Because it's cool to write code that writes other code
e Because code reuse Is nice
o I.e. Having to write boilerplate code over and over again is bad. Why?
e Rust does macros pretty differently from C and this has some cool
implications for the kind of code you can write.
o Rust macros can let you execute arbitrary code at compile-time
o Could you imagine doing something like derive with C macros?



You have already used macros In Rust

println!(“hello {}!”, name);
vec![1, 2, 3];
#[derive(Clone, Copy)]
#[tokio::main]



First, a little bit about languages and compilers

e Processors on your computer don’t speak Rust
e The rust compiler (rustc) must take your Rust code and translate it into assembly
language
e (Compilers usually operate in four steps:
o Lexing — find the tokens e.g. “fn” “if” “struct” “trait” “pub” etc.
o Parsing — understand the structure of these tokens e.g. what part of code
corresponds to this if statement? produce an abstract syntax tree (AST)
o Type-checking/Semantic Analysis — Make sure the code makes sense e.qg.
you can’t pass in a String to a function that expects a u32, borrow-checking
o Code generation — convert your type-labeled AST into assembly.
o |f you'd like to learn more and build your very own compiler, take C5143!



Abstract Syntax Trees and Token Trees

e Rust macros operate over token trees which are somewhere between the

abstract syntax tree and the raw tokens themselves.
o |dentifiers (variable names, keywords), literals (e.g. int and string literals),

punctuation (not a delimiter, e.g. “.”), and groups.
e An AST provides us full info about the expression as a whole
e T[he token-tree tells us about how tokens are grouped together with (...), {...},

and [...]
o We’ll see pictures of this in the following slides



Token Tree(s) Example




AST Example

e a+tb+(c+d ) +e

var

name: a

I
var |

name: e |
|

var LitInt
name: d val: 0

https://danielkeep.qithub.io/tilborm/book/mbe-syn-source-analysis.html



https://danielkeep.github.io/tlborm/book/mbe-syn-source-analysis.html

Declarative Macros with macro rules!

e \ery fancy pattern matching. Sort of like C macros on steroids

e Patterns look like this:
o {$pattern} => {expansion}

e TJries to find match (over token tree) and expand to the code indicated by that
case of the match (we’ll see an example in the next slide)

e |[f you'd like to learn more about all the possible patterns/rules, take a look
through the links on the last slide.



Peeking under the hood of vec!

#[macro_export]
macro rules! vec {
( $( $x:expr ),x ) => {

{
let mut temp_vec = Vec::new();
$(
temp_vec.push($x);
)
temp_vec
}



Peeking under the hood of vec!

Z0ro 07 MAC .
o e s, | ved (12,3

($($X:e_x£r))*)___> fﬁgxbwrdMMme ?

i
let mut 'ftmp, VeL : Vec::new(), i
‘$ ( Mﬂ&m&%gj \eA muk 'IWP.WO g Vel}tzrw( ),
+omp_vec . push (8X) formp vec. push (1);
ya  —his blok of (oL +ommp_ vec.push (2)
WWMO fo fomvp € yomp-veL. pubh (3).
tomp-vec
) 3



Procedural Macros

e Functions that take in code as input and produce code as output
o Declarative macros feel more like match statements than they do like
functions.
o Procedural macros are more powerful than declarative macros but often
harder to use (not to imply that macro_rules! is easy!)
= the power vs. simplicity tradeoff is a common theme
e T[hree kinds:
o Derive-type macros
o Attribute-like macros
o Function-like macros



“Derive” Macros

e Recall that we can automatically derive traits for structs we define
o We’ll take a look at an example from the Rust book for how we can

automatically generate code that implements traits for a given type
e We’ll have to deal with TokenSt reams: stream of token trees

#[derive(Clone, Copy, Debug)]
pub struct Point {

X: 132,

y: 132,



“Derive” Macros — The Plan

We’'re going to walk through an example from the Rust Book.

We will define a function that takes in the struct as input as a TokenStream
It will then parse the TokenStream as an AST

It will use the AST to figure out the name of the struct

We will then use another macro called quote! to define a trait implementation
for our struct and output this implementation as a TokenStream

#[derive(Clone, Copy, Debug)]
pub struct Point {

X: 132,

y: 132,



“Derive” Macros — Code Example

// Client of the macro
use hello macro::HelloMacro;
use hello macro derive::HelloMacro;

#[derive(HelloMacro)]
struct Pancakes:

fn main() {
Pancakes::hello macro();
+



“Derive” Macros — Code Example

extern crate proc_macro;

use proc_macro::TokenStream;

use quote::quote;

use syn;

#[proc_macro_derive(HelloMacro)]

pub fn hello_macro_derive(input: TokenStream) —-> TokenStream {

let ast = syn::parse(input).unwrap();

impl_hello_macro(&ast)



“Derive” Macros — Code Example

fn impl_hello _macro(ast: &syn::DerivelInput) —> TokenStream 1
let name = &ast.ident;
let gen = quote! {
impl HelloMacro for #name {
fn hello macro() {

println! ("Hello, Macro! My name is {}!", stringify! (#name));
}

+
b

gen.into()



Attribute-like procedural macros

e Like the derive macros but more general

e You can apply these macros to other syntactic entities e.g. functions

e You can write an attribute macro that verifies that you write your enum
variants in sorted order (check out the project link on the last slide)

e You can write an attribute macro that packages a struct into a bitfield (also on
the same project link)

e You can write an attribute macro that generates code for an HT TP request
handler function (our guest speaker might talk about a project related to this
next Tuesday!)



Attribute-like procedural macros (example)

#[bitfield]
pub struct MyFourBytes {
a: Bl,
b: B3,
c: B4,
d: B24,
s

// Emits the code below (and rewrites struct definition to contain a private byte array)
impl MyFourBytes {

// Initializes all fields to 0.

pub fn new() —> Self;

// Field getters and setters:

pub fn get_a(&self) —> u8;

pub fn set_a(&mut self, val: u8);
pub fn get _b(&self) —> u8;

pub fn set_b(&mut self, val: u8);
pub fn get_c(&self) —> u8;

pub fn set_c(&mut self, val: u8);
pub fn get _d(&self) —> u32;

pub fn set_d(&mut self, val: u32);



Function-like procedural macros

e Macro that looks like a function call
e e.9.sqgll Macro from the Rust book — will construct some sort of SQL query

object from SQL syntax.
let sgl = sql!(SELECT % FROM posts WHERE id=1);

#[proc_macro]
pub fn sql(input: TokenStream) —> TokenStream {

S



Recursive Macros

Macros can invoke other macros

Macros can invoke themselves

This can happen with declarative macros and with procedural macros
We’ll see an example on the next slide



A Declarative Recursive Macro

macro_rules! write_html {
($wiexpr, ) => (());

($wiexpr, S$e:tt) => (write!($w, "{}", %e));

(swiexpr, $tag:ident [ $($inner:tt)x 1 $($rest:itt)*) => {{
write!($w, "<{}>", stringify!($taqg));
write_html!($w, $($inner)x);
write! ($w, "</{}>", stringify!($tag));
write_html!($w, $($rest)x);

Hh

I3
// Usage:
write _html! (&mut out,

html[
head[title["Macros guide"]]
body[h1["Macros are the best!"]]

1);
// https://doc.rust-lang.org/1.7.0/book/macros.html



https://doc.rust-lang.org/1.7.0/book/macros.html

Summary

e Declarative macros

o macro rules!

o Match expressions and expand out, emitting code accordingly
e Procedural macros

o Procedures that take in TokenStreams and emit TokenStreams
o More powerful than declarative macros but trickier to use
o Derive
o Attribute
o Function-like



Resources

The Rust Book on Macros

The Little Book of Rust Macros

A Great Blog Post about Procedural Macros by Alex Crichton
A Great Blog Post About Macros

A Workshop on Procedural Macros

A Blog Post about Recursive Macros



https://doc.rust-lang.org/book/ch19-06-macros.html
https://danielkeep.github.io/tlborm/book/README.html
https://blog.rust-lang.org/2018/12/21/Procedural-Macros-in-Rust-2018.html
https://words.steveklabnik.com/an-overview-of-macros-in-rust
https://github.com/dtolnay/proc-macro-workshop
https://rreverser.com/writing-complex-macros-in-rust/

