
Rust Macros

Ryan Eberhardt and Armin Namavari

June 2, 2020

Logistics

! CS110L shouldn’t be your priority right now

! Project 2 is out and we’ve updated our policy on it with regards to current

circumstances — please check out Ryan’s Slack post.

! Please fill out Week 8 survey tonight: https://forms.gle/PEmptvXLx5TdTm4A9

https://forms.gle/PEmptvXLx5TdTm4A9

Today

! The Plan

○ Preliminaries

○ Rust Macros

■ Declarative Macros

■ Procedural Macros (of which there are three kinds)

! Goal: understand what Rust macros are and how they work.
! This is one of the strangest concepts we’ll cover (yes, maybe even weirder than

nonblocking I/O and futures). Please ask questions.
! Next week we’ll have a guest speaker who will talk about some exciting systems

work he’s done with Rust and how that work draws on the power of Rust macros.

○ You may want to review this lecture before next Tuesday!

What are Macros? (in C)

! Basically fancy find-and-replace

! When found, the macro is replaced

with some chunk of code

! It’s almost like there aren’t any rules

(see the example on the bottom)

! What about:

○ #define MAX(X, Y) (((X)
> (Y)) ? (X) : (Y))

https://stackoverflow.com/questions/3437404/min-and-max-in-c, https://danielkeep.github.io/tlborm/book/mbe-syn-source-analysis.html

https://stackoverflow.com/questions/3437404/min-and-max-in-c
https://danielkeep.github.io/tlborm/book/mbe-syn-source-analysis.html

Why Macros?

! Because it’s cool to write code that writes other code

! Because code reuse is nice

○ i.e. Having to write boilerplate code over and over again is bad. Why?

! Rust does macros pretty differently from C and this has some cool

implications for the kind of code you can write.

○ Rust macros can let you execute arbitrary code at compile-time
○ Could you imagine doing something like derive with C macros?

You have already used macros in Rust

! println!(“hello {}!”, name);
! vec![1, 2, 3];
! #[derive(Clone, Copy)]
! #[tokio::main]

First, a little bit about languages and compilers

! Processors on your computer don’t speak Rust

! The rust compiler (rustc) must take your Rust code and translate it into assembly

language

! Compilers usually operate in four steps:

○ Lexing — find the tokens e.g. “fn” “if” “struct” “trait” “pub" etc.

○ Parsing — understand the structure of these tokens e.g. what part of code

corresponds to this if statement? produce an abstract syntax tree (AST)

○ Type-checking/Semantic Analysis — Make sure the code makes sense e.g.

you can’t pass in a String to a function that expects a u32, borrow-checking

○ Code generation — convert your type-labeled AST into assembly.

○ If you’d like to learn more and build your very own compiler, take CS143!

Abstract Syntax Trees and Token Trees

! Rust macros operate over token trees which are somewhere between the
abstract syntax tree and the raw tokens themselves.

○ Identifiers (variable names, keywords), literals (e.g. int and string literals),

punctuation (not a delimiter, e.g. “.”), and groups.

! An AST provides us full info about the expression as a whole

! The token-tree tells us about how tokens are grouped together with (…), {…},

and […]

○ We’ll see pictures of this in the following slides

Token Tree(s) Example

AST Example

! a + b + (c + d[0]) + e

 https://danielkeep.github.io/tlborm/book/mbe-syn-source-analysis.html

https://danielkeep.github.io/tlborm/book/mbe-syn-source-analysis.html

Declarative Macros with macro_rules!

! Very fancy pattern matching. Sort of like C macros on steroids

! Patterns look like this:

○ {$pattern} => {expansion}
! Tries to find match (over token tree) and expand to the code indicated by that

case of the match (we’ll see an example in the next slide)

! If you’d like to learn more about all the possible patterns/rules, take a look

through the links on the last slide.

Peeking under the hood of vec!

#[macro_export]
macro_rules! vec {
 ($($x:expr),*) => {
 {
 let mut temp_vec = Vec::new();
 $(
 temp_vec.push($x);
)*
 temp_vec
 }
 };
}

Peeking under the hood of vec!

Procedural Macros

! Functions that take in code as input and produce code as output

○ Declarative macros feel more like match statements than they do like

functions.

○ Procedural macros are more powerful than declarative macros but often

harder to use (not to imply that macro_rules! is easy!)

■ the power vs. simplicity tradeoff is a common theme

! Three kinds:

○ Derive-type macros

○ Attribute-like macros

○ Function-like macros

“Derive” Macros

! Recall that we can automatically derive traits for structs we define

! We’ll take a look at an example from the Rust book for how we can

automatically generate code that implements traits for a given type

! We’ll have to deal with TokenStreams: stream of token trees

“Derive” Macros — The Plan

! We’re going to walk through an example from the Rust Book.

! We will define a function that takes in the struct as input as a TokenStream

! It will then parse the TokenStream as an AST

! It will use the AST to figure out the name of the struct

! We will then use another macro called quote! to define a trait implementation

for our struct and output this implementation as a TokenStream

“Derive” Macros — Code Example

// Client of the macro
use hello_macro::HelloMacro;
use hello_macro_derive::HelloMacro;

#[derive(HelloMacro)]
struct Pancakes;

fn main() {
 Pancakes::hello_macro();
}

“Derive” Macros — Code Example

extern crate proc_macro;

use proc_macro::TokenStream;
use quote::quote;
use syn;

#[proc_macro_derive(HelloMacro)]
pub fn hello_macro_derive(input: TokenStream) -> TokenStream {
 // Construct a representation of Rust code as a syntax tree
 // that we can manipulate
 let ast = syn::parse(input).unwrap();

 // Build the trait implementation
 impl_hello_macro(&ast)
}

“Derive” Macros — Code Example

fn impl_hello_macro(ast: &syn::DeriveInput) -> TokenStream {
 let name = &ast.ident;
 let gen = quote! {
 impl HelloMacro for #name {
 fn hello_macro() {
 println!("Hello, Macro! My name is {}!", stringify!(#name));
 }
 }
 };
 gen.into()
}

Attribute-like procedural macros

! Like the derive macros but more general

! You can apply these macros to other syntactic entities e.g. functions

! You can write an attribute macro that verifies that you write your enum

variants in sorted order (check out the project link on the last slide)

! You can write an attribute macro that packages a struct into a bitfield (also on

the same project link)

! You can write an attribute macro that generates code for an HTTP request

handler function (our guest speaker might talk about a project related to this
next Tuesday!)

Attribute-like procedural macros (example)

#[bitfield]
pub struct MyFourBytes {
 a: B1,
 b: B3,
 c: B4,
 d: B24,
}
// Emits the code below (and rewrites struct definition to contain a private byte array)
impl MyFourBytes {
 // Initializes all fields to 0.
 pub fn new() -> Self;

 // Field getters and setters:
 pub fn get_a(&self) -> u8;
 pub fn set_a(&mut self, val: u8);
 pub fn get_b(&self) -> u8;
 pub fn set_b(&mut self, val: u8);
 pub fn get_c(&self) -> u8;
 pub fn set_c(&mut self, val: u8);
 pub fn get_d(&self) -> u32;
 pub fn set_d(&mut self, val: u32);
}

Function-like procedural macros

! Macro that looks like a function call

! e.g. sql! Macro from the Rust book — will construct some sort of SQL query

object from SQL syntax.

let sql = sql!(SELECT * FROM posts WHERE id=1);

#[proc_macro]
pub fn sql(input: TokenStream) -> TokenStream {
…
}

Recursive Macros

! Macros can invoke other macros

! Macros can invoke themselves

! This can happen with declarative macros and with procedural macros

! We’ll see an example on the next slide

A Declarative Recursive Macro

macro_rules! write_html {
 ($w:expr,) => (());

 ($w:expr, $e:tt) => (write!($w, "{}", $e));

 ($w:expr, $tag:ident [$($inner:tt)*] $($rest:tt)*) => {{
 write!($w, "<{}>", stringify!($tag));
 write_html!($w, $($inner)*);
 write!($w, "</{}>", stringify!($tag));
 write_html!($w, $($rest)*);
 }};
}
// Usage:
write_html!(&mut out,
 html[
 head[title["Macros guide"]]
 body[h1["Macros are the best!"]]
]);

// https://doc.rust-lang.org/1.7.0/book/macros.html

https://doc.rust-lang.org/1.7.0/book/macros.html

Summary

! Declarative macros

○ macro_rules!
○ Match expressions and expand out, emitting code accordingly

! Procedural macros

○ Procedures that take in TokenStreams and emit TokenStreams

○ More powerful than declarative macros but trickier to use

○ Derive

○ Attribute

○ Function-like

Resources

! The Rust Book on Macros

! The Little Book of Rust Macros

! A Great Blog Post about Procedural Macros by Alex Crichton

! A Great Blog Post About Macros

! A Workshop on Procedural Macros

! A Blog Post about Recursive Macros

https://doc.rust-lang.org/book/ch19-06-macros.html
https://danielkeep.github.io/tlborm/book/README.html
https://blog.rust-lang.org/2018/12/21/Procedural-Macros-in-Rust-2018.html
https://words.steveklabnik.com/an-overview-of-macros-in-rust
https://github.com/dtolnay/proc-macro-workshop
https://rreverser.com/writing-complex-macros-in-rust/

