
Futures I

Ryan Eberhardt and Armin Namavari

May 26, 2020

Logistics

! Congrats on making it to week 8! 🔥

○ I can’t believe it’s week 8 😳

! It’s exciting to see people saying they’re starting to appreciate Rust more!

○ Thanks for sharing your thoughts in #reflections!

Today

! The Plan

○ Threads — the perfect solution to scalable I/O?

■ This is a rhetorical question, the answer is no.

○ Nonblocking I/O

○ Rust Futures

! These concepts are really tricky so please ask questions!
! It’s OK if futures don’t make sense today, we’ll review them and practice them

on Thursday as well.

But first… what do you think this code does?

// Pretend you don’t see the unfamiliar syntax! (i.e. async/await)
tokio::spawn(async move { // example from the Tokio docs
 let mut buf = [0; 1024];
 loop {
 let n = match socket.read(&mut buf).await {
 Ok(n) if n == 0 => return,
 Ok(n) => n,
 Err(e) => {
 eprintln!("failed to read from socket; err = {:?}", e);
 return;
 }
 };
 if let Err(e) = socket.write_all(&buf[0..n]).await {
 eprintln!("failed to write to socket; err = {:?}", e);
 return;
 }
 }
});

Review: Threads

! A “virtual process”

○ Control: the routine (i.e. function) running inside of the thread

○ State: a stack, CPU registers, status (ready/running/blocked), etc.

! The OS manages threads
○ The dispatcher is responsible for assigning threads to run on cores,

swapping them on and off as appropriate.

■ These context switches aren’t the cheapest thing e.g. the overhead of

copying stuff, cache evictions etc.

○ The scheduler is responsible for deciding what thread to run next.

The Dispatcher

! What sorts of things can move us from
“running” to “blocked”?

○ I/O: reading and writing

○ Waiting: waitpid, sigsuspend, join,

cv.wait(…) etc.

○ lock()

○ sleep()

! If a thread is blocked, it can’t waste CPU
resources

○ This is why threading lets us overlap wait

times for I/O bound operations.

Building a High Performance Server with Threads

! Great, so if we want to build a server that can handle many requests at once,
we just declare a big thread pool with ~4000 threads, right?

○ Each thread needs its own stack…

○ 4000 lil’ stacks adds up to a LOT of memory!

○ This ends up being very cache unfriendly

○ The OS also has to manage resources on behalf of these 4000 threads

! Upshot: if you use blocking operations, you are fundamentally limited by the
number of threads you can run at once 😕

! Also, threads are often hard to get right

○ Race conditions, deadlock, etc.

Non-blocking I/O

! Traditionally, the read sys call would block if there is more data to be read but
not available

! Instead, we could have read return a special error value instead of blocking
so that we can do other useful work on this thread e.g. reading from other
descriptors we’re managing.

○ This is especially relevant for I/O intensive pieces of software like servers.

○ Often times you’d call these nonblocking I/O operations in a loop and use

something like epoll to keep track of which are ready

! This allows us to have concurrent I/O with one thread!

Non-blocking I/O visualized

! Epoll is a kernel-provided
mechanism that notifies us of
what fds are ready for I/O.

○ Why should we attempt to do

I/O on fds that aren’t even
ready?

! We perform I/O only on
descriptors that are ready until
they are no longer ready.

State management

! Epoll is nifty, but it forces us to
manage state in tricky ways

○ If you have one thread per

connection, all the state for
each connection is stored in
each thread’s stack

○ If you’re trying to use epoll, you
have to store the state yourself
and somehow associate each
file descriptor with state

State management

! Rust (and a handful of other
languages) us in two ways:

○ Futures allow us to keep track

of in-progress operations
along with associated state, in
one package

○ async/await syntax allows us
to easily chain futures together,
creating “threads” of futures

Intro to Futures

! Future: the result of a computation that may or
may not have completed.

○ A “computation in progress”

○ Very similar to promises in Javascript (if you’re

familiar with those)

○ A single thread can run multiple futures =>

! In Rust, futures are structs that implement the
Future trait

○ These structs could represent, for instance, a

nonblocking I/O operation.

The Future Trait

trait Future { // This is a simplified version of the Future definition
 type Output;
 fn poll(&mut self, cx: &mut Context) -> Poll<Self::Output>;
 // cx contains a “waker” that provides a notification mechanism
 // to indicate that the Future is ready to make more progress
 // e.g. data becomes available to read
}

enum Poll<T> {
 Ready(T),
 Pending,
}

Executors

! In order to actually execute futures, we need some sort of runtime or
“executor” that repeatedly calls the “poll” function of the Future object.

○ This is a generalization of the loop for nonblocking I/O we had earlier.

! A popular executor in the Rust ecosystem is Tokio and it’s what you’ll be
using in Project 2!

! If you have multiple cores on your machine, you can actually execute futures
truly in parallel!

○ This means that if you have multiple async tasks running, you need to

protect shared data using synchronization primitives.

What is an executor really doing?

Combining futures together

! Map — apply some function to the output of the future

○ We can combine a function and a future to get a new future!

! Join — start executing a group of futures concurrently

○ We can take futures, put them together, and get a new future!

! Rust lets us ergonomically chain futures together by using the await keyword.

Async/Await Code Example

tokio::spawn(async move { // example from the Tokio docs for a TCP echo server
 let mut buf = [0; 1024];

 // In a loop, read data from the socket and write the data back.
 loop {
 let n = match socket.read(&mut buf).await { // non-blocking read!
 // socket closed
 Ok(n) if n == 0 => return, // no more data to read
 Ok(n) => n,
 Err(e) => {
 eprintln!("failed to read from socket; err = {:?}", e);
 return;
 }
 };

 // Write the data back
 if let Err(e) = socket.write_all(&buf[0..n]).await { // non-blocking write!
 eprintln!("failed to write to socket; err = {:?}", e);
 return;
 }
 }
});

Async: Under the Hood

Await vs. Join

async fn assemble_book() -> String {
 // The request returns a future for a non-blocking read operation
 let half1 = request_first_half_server();
 let half2 = request_second_half_server();
 let first_half_str: String = half1.await;
 let second_half_str: String = half2.await;
 format!("{}{}", first_half_str, second_half_str)
}

async fn assemble_book() -> String {
 // The request returns a future for a non-blocking read operation
 let half1 = request_first_half_server();
 let half2 = request_second_half_server();
 let (first_half_str, second_half_str) = futures::join!(half1, half2);
 format!("{}{}", first_half_str, second_half_str)
}

Async/Await in Rust

! Rust enables us to write our code in a way that looks blocking, but actually
runs asynchronously

○ Like many fancy features in Rust, we get this from the magic of the Rust

compiler — async/await provide us with syntactic sugar.

○ Long story short: the Rust compiler is able to transform your chain of

async computation (i.e. futures) into an efficient state machine.

! This is amazing! You get the ergonomics of writing code that looks like it’s

blocking but the performance benefits of nonblocking operations!

General Tips for Async Rust

! Never block in async code!

○ Asynchronous tasks are cooperative (not preemptive)

! You can only use await in async functions.

! Rust won’t let you write async functions in traits (for technical reasons that have to

do with lifetimes and the fact that you can’t have associated type bounds yet)

○ You can use a crate called async-trait though!

! Be cognizant of shared state between tasks and synchronize appropriately! (e.g.
you may need a Mutex<T>, but of course, one that will play well with Futures)

○ Tokio provides its own async implementations of concurrency primitives. E.g.

you can replace std::sync::mutex with tokio::sync::mutex (the API is
nearly identical)

Additional Resources/References

! A great talk about how Rust arrived on the design for futures

! Another great talk about futures

! Phil Levis' CS110 Lecture on Events, Threads, and Async I/O

! The Rust Docs on Futures

! An article on futures

! John Ousterhout on why threads are a bad idea

! A great (and very accessible) Medium article explaining epoll (also has great

illustrations!)

! A CS242 Assignment on Implementing Futures

! Note: the syntax for futures has changed over time so some of these articles may

use outdated syntax — for the most up-to-date syntax, check out the docs.

https://www.youtube.com/watch?v=lJ3NC-R3gSI&feature=youtu.be
https://www.youtube.com/watch?v=NNwK5ZPAJCk
https://slides.com/philip_levis/lecture-19-events-threads#/
https://docs.rs/futures/0.3.5/futures/prelude/trait.Future.html
https://www.viget.com/articles/understanding-futures-in-rust-part-1/
https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
https://medium.com/@copyconstruct/the-method-to-epolls-madness-d9d2d6378642
https://medium.com/@copyconstruct/the-method-to-epolls-madness-d9d2d6378642
http://cs242.stanford.edu/f19/assignments/assign7/#1-futures-40

