
Information Security

Ryan Eberhardt and Armin Namavari

May 21, 2020

Today

! How do you keep information safe and sound?

! Could be an entire class by itself!

○ Today’s lecture isn’t even a high-level overview… it’s just a slice of the
topic, from the perspective of networked systems design

Networked services

! Recall: In a networked service, a server listens for connections from one or
more clients

○ When a connection is established, the client sends the server some

request (usually using a protocol/“language” like HTTP)

○ The server interprets the request and sends some response back over the

connection

! What threats might we need to defend against if our server has sensitive

information?

Today

! Today:

○ Don’t give information to attackers that ask nicely

○ Make sure your dependencies don’t give information to attackers that ask

nicely

○ Don’t give information to attackers that don’t ask nicely

Level 1: Don’t give information to
attackers that ask nicely

Level 1: Don’t give information to attackers that ask nicely

! Stupid attack:

Attacker Server

GET /super/secret/sauce HTTP/1.1

HTTP/1.1 200 OK
The secret sauce is MSG

! No one would be that silly, right?

Panera Bread mobile ordering app

Attacker Server

GET /foundation-api/users/uramp/7382194 HTTP/1.1

HTTP/1.1 200 OK

{
 "customerId": 7382194,
 "username": "redacted@cox.net",
 "firstName": "redacted",
 "lastName": "redacted",
 "loyalty": {
 "cardNumber": "redacted"
 },
 "emails": [
 {
 "id": redacted,
 "emailAddress": “redacted@cox.net",
 "emailType": "Personal",
 "isDefault": true,
 "isOpt": true,
 "isVerified": true
 }
],

 "phones": [
 {
 "id": 18295989,
 "phoneNumber": "redacted",
 "phoneType": "Residential",
 "countryCode": "1",
 "extension": null,
 "name": null,
 "isSmsOpt": false,
 "isCallOpt": false,
 "isDefault": true,
 "isValid": true,
 "smsPreferences": [
 {
 "programName": "Delivery",
 "isOpt": false,
 "isOptPending": false
 }
]
 }
],

"isSmsGlobalOpt": false,
 "isEmailGlobalOpt": true,
 "isMobilePushOpt": false,
 "birthDate": {
 "birthDay": "redacted",
 "birthMonth": "redacted",
 "birthYear": "redacted"
 },
 "userPreferences": {
 "foodPreferences": [
 {
 "code": 3,
 "displayName": "Low Fat"
 }
],
 "gatherPreference": {
 "code": 7,
 "displayName": "Meal with family"
 }
 },

"subscriptions": {
 "subscriptions": [
 {
 "subscriptionCode": 1,
 "displayName": "Reward Reminders & Expiration Alerts",
 "isSubscribed": false,
 "tncVersion": null
 },
 {
 "subscriptionCode": 2,
 "displayName": "Panera Bread Updates & Special Offers",
 "isSubscribed": false,
 "tncVersion": null
 }
],
 "suppressors": [
 {
 "suppressionCode": 1,
 "displayName": "Catering",
 "isSuppressed": false
 },

Panera Bread mobile ordering app

Attacker Server

GET /foundation-api/users/uramp/7382194 HTTP/1.1

! Sequential IDs: you could trivially enumerate every ID and download their entire database

! Case study in how not to handle a security breach:

○ Blew off security researcher for 8 months

○ Within two hours of researcher going to the press, announces issue is fixed and only 10k users affected

■ Look at the user ID above! 7382194 >> 10000

○ Did not actually fix vulnerability! Same mistake was present on dozens of other API “endpoints” as well

as other applications

! https://medium.com/@djhoulihan/no-panera-bread-doesnt-take-security-seriously-bf078027f815

! Note: Not trying to pick on Panera. Bad attitudes towards security are endemic throughout industry (part of

the motivation for teaching this class!)

https://medium.com/@djhoulihan/no-panera-bread-doesnt-take-security-seriously-bf078027f815

How do we avoid this?

Authentication and authorization

! Authentication: who are you?

○ Established by supplying credentials (e.g. username/password, 2FA

authentication token, secret key, etc.)

! Authorization: are you allowed to do what you’re trying to do?

○ Established by some security policy (e.g. a user may access his/her own
emails, but not the emails of other people)

! A secure service must establish both

Common setup

! Authentication: clients must demonstrate their identities

! Authorization: server must check permission before carrying out request

! Tokens aren’t strictly necessary here, but provide a mechanism for expiring credentials

after some time

○ Cookies = tokens

Client Server

My username is cactus and my password is prickly

Great! Use this token next time you talk to me: abc123

Show me emails for user cactus. My token is abc123

Here are emails for user cactus: …

Validate abc123
Check that cactus has
necessary permissions

Authorization

Authentication

Life without authentication: SaltStack

! Last week, we alluded to clusters of hundreds or thousands of machines
used to provide scale and availability

! You can’t manage that many machines by SSHing in individually

SaltStack
master

Compute node
Application

SS Minion

Compute node
Application

SS Minion

🔐 My CPU usage is 68%!

🔐 My CPU usage is 20%!

Life without authentication: SaltStack

! Last week, we alluded to clusters of hundreds or thousands of machines
used to provide scale and availability

! You can’t manage that many machines by SSHing in individually

SaltStack
master

Compute node
Application

SS Minion

Compute node
Application

SS Minion

🔐 Install version 10

🔐 Install version 10

System
administrator

🔐 Please update the
servers to version 10

Job queue:

Life without authentication: SaltStack

! SaltStack accidentally exposed a function to network requests that enqueues
messages

! Was never intended to be called directly in network requests

SaltStack
master

Compute node
Application

SS Minion

Compute node
Application

SS Minion

🔐 Install bitcoin miner

🔐 Install bitcoin miner

System
administrator

🔐 Please update the
servers to version 10

Job queue:
Attacker 😈

_send_pub(): install
bitcoin miner and kill

SSH

Life without authentication: SaltStack

! Exactly three weeks ago, companies’ entire clusters started becoming
unreachable

○ Many of them targeted with bitcoin mining + backdoor

○ DigiCert, Algolia, Ghost, Xen Orchestra, LineageOS, others

○ Nightmare to fix! Once you manage to get back in, how do you verify

attackers aren’t still hiding?

○ https://duo.com/decipher/saltstack-flaw-used-in-numerous-attacks

○ https://blog.sonatype.com/saltstack-20-breaches-within-four-days

https://duo.com/decipher/saltstack-flaw-used-in-numerous-attacks
https://blog.sonatype.com/saltstack-20-breaches-within-four-days

Life without authorization: LocationSmart

! LocationSmart is a location tracking service that partners with every major US
cell carrier and sells location data (e.g. to law enforcement, marketing
agencies, companies wanting to track corporate devices)

○ Location data is collected via cell phone tower triangulation. Impossible to

opt-out

Life without authorization: LocationSmart

! The company offered a demo website that shows your own location on a map

HTTP/1.1 200 OK 
{“uid":"REDACTED", “requestTime":"2018-05-16T21:25:50.689+00:00", “statusCode”:0,

“statusMsg":"Success", “deviceId":"8005551212", “token":"TOKEN", “locatable":"True", “network":
{"carrier":"T-Mobile", “locatable":"True", “callType":"wireless", "locAccuracySupport":"Precise

Possible”, “nationalNumber":"8005551212", “countryCode":"1", “regionCode":"US",
"regionCountry":"UNITED STATES”}, “subscriptionGroup":[{"name":"LOCA-D01-LOCNOPIN",

“locatable":"False", “smsAvailable":"False"}, {“name":"LOCA-D02-WELCOME", “locatable":"False",
“smsAvailable":"False"}], “smsAvailable":"True", “privacyConsentRequired":"True",
“clientLocatable":"false", "clientSMSAvailable":"Not supported”, "whiteListed":"false"}

Life without authorization: LocationSmart

Client Server

POST /try/api HTTP/1.1 
requestdata={“deviceType":"Wireless","deviceID":"8005551212","devicedetails":"true",

"carrierReq":"true"}&requesttype=statusreq.json

HTTP/1.1 200 OK 
{“uid":"REDACTED", “requestTime":"2018-05-16T21:25:50.689+00:00", “statusCode”:0,

“statusMsg":"Success", “deviceId":"8005551212", “token":"TOKEN", “locatable":"True", …

Life without authorization: LocationSmart

Client Server

POST /try/api HTTP/1.1 
requestdata={“deviceType":"Wireless","deviceID":"8005551212","devicedetails":"true",

"carrierReq":"true"}&requesttype=statusreq.json

POST /try/api HTTP/1.1  
requestdata={"subscriptionAction":"status","tn":"8005551212","carrierReq":"true"}

&requesttype=subscriptionreq

HTTP/1.1 200 OK 
<?xml version="1.0" encoding="UTF-8"?>

<LocResp>
 <uid>REDACTED</uid>

 <requestTime>2018-05-17T00:03:46.073+00:00</requestTime>
 <statusCode>42</statusCode>

 <statusMsg>SubscriptionNotActive</statusMsg>
 <carrier>T-Mobile</carrier>

 <deviceId>8005551212</deviceId>
 <tn>8005551212</tn>

</LocResp>

HTTP/1.1 200 OK 
{“uid":"REDACTED", “requestTime":"2018-05-16T21:25:50.689+00:00", “statusCode”:0,

“statusMsg":"Success", “deviceId":"8005551212", “token":"TOKEN", “locatable":"True", …

Life without authorization: LocationSmart

Client Server

POST /try/api HTTP/1.1 
requestdata={“deviceType":"Wireless","deviceID":"8005551212","devicedetails":"true",

"carrierReq":"true"}&requesttype=statusreq.json

POST /try/api HTTP/1.1  
requestdata={"subscriptionAction":"status","tn":"8005551212","carrierReq":"true"}

&requesttype=subscriptionreq

HTTP/1.1 200 OK 
<?xml version="1.0" encoding="UTF-8"?>

<SubscriptionResp>
 <uid>REDACTED</uid>

 <requestTime>2018-05-17T00:43:44.631+00:00</requestTime>
 <statusCode>0</statusCode>

 <statusMsg>Success</statusMsg>
 <tn>8005551212</tn>

 <subscriptionGroup>LOCA-D01-LOCNOPIN</subscriptionGroup>
 <subscriptionOptInState>requested</subscriptionOptInState>

 <contact>sms</contact>
</SubscriptionResp>

HTTP/1.1 200 OK 
{“uid":"REDACTED", “requestTime":"2018-05-16T21:25:50.689+00:00", “statusCode”:0,

“statusMsg":"Success", “deviceId":"8005551212", “token":"TOKEN", “locatable":"True", …

Life without authorization: LocationSmart

Client Server

POST /try/api HTTP/1.1 
requestdata={“deviceType":"Wireless","deviceID":"8005551212","devicedetails":"true",

"carrierReq":"true"}&requesttype=statusreq.json

POST /try/api HTTP/1.1  
requestdata={"subscriptionAction":"status","tn":"8005551212","carrierReq":"true"}

&requesttype=subscriptionreq
HTTP/1.1 200 OK 

…
POST /try/api HTTP/1.1  

requestdata={“civicAddressReq”:"True","geoAddressReq":"True","extAddressReq":"True","nearby
PoiReq":"True","privacyConsent":"True","token":"TOKEN","locationtype":"network","accuracyReq":"

Coarse","tnDetailReq":"False","carrierReq":"true"}&requesttype=locreq

HTTP/1.1 200 OK 
Location data in XML format

HTTP/1.1 200 OK 
{“uid":"REDACTED", “requestTime":"2018-05-16T21:25:50.689+00:00", “statusCode”:0,

“statusMsg":"Success", “deviceId":"8005551212", “token":"TOKEN", “locatable":"True", …

Life without authorization: LocationSmart

Client Server

POST /try/api HTTP/1.1 
requestdata={“deviceType":"Wireless","deviceID":"8005551212","devicedetails":"true",

"carrierReq":"true"}&requesttype=statusreq.json

POST /try/api HTTP/1.1  
requestdata={"subscriptionAction":"status","tn":"8005551212","carrierReq":"true"}

&requesttype=subscriptionreq
HTTP/1.1 200 OK 

…
POST /try/api HTTP/1.1  

requestdata={“civicAddressReq”:"True","geoAddressReq":"True","extAddressReq":"True","nearby
PoiReq":"True","privacyConsent":"True","token":"TOKEN","locationtype":"network","accuracyReq":"

Coarse","tnDetailReq":"False","carrierReq":"true"}&requesttype=locreq

Error if user has not consented (or location info if they have)

HTTP/1.1 200 OK 
{“uid":"REDACTED", “requestTime":"2018-05-16T21:25:50.689+00:00", “statusCode”:0,

“statusMsg":"Success", “deviceId":"8005551212", “token":"TOKEN", “locatable":"True", …

Life without authorization: LocationSmart

Client Server

POST /try/api HTTP/1.1 
requestdata={“deviceType":"Wireless","deviceID":"8005551212","devicedetails":"true",

"carrierReq":"true"}&requesttype=statusreq.json

POST /try/api HTTP/1.1  
requestdata={"subscriptionAction":"status","tn":"8005551212","carrierReq":"true"}

&requesttype=subscriptionreq
HTTP/1.1 200 OK 

…
POST /try/api HTTP/1.1  

requestdata={“civicAddressReq”:”True","geoAddressReq":"True","extAddressReq":"True","nearby
PoiReq":"True","privacyConsent":"True","token":"TOKEN","locationtype":"network","accuracyReq":"

Coarse","tnDetailReq":"False","carrierReq":"true"}&requesttype=locreq.json

Location info (regardless of whether user consented)

Life without authorization: LocationSmart

! Almost certainly a bad case of copy/paste

! Trivial to exploit

! Overview and context: https://krebsonsecurity.com/2018/05/tracking-firm-

locationsmart-leaked-location-data-for-customers-of-all-major-u-s-mobile-
carriers-in-real-time-via-its-web-site/

! Technical writeup: https://www.robertxiao.ca/hacking/locationsmart/

https://krebsonsecurity.com/2018/05/tracking-firm-locationsmart-leaked-location-data-for-customers-of-all-major-u-s-mobile-carriers-in-real-time-via-its-web-site/
https://krebsonsecurity.com/2018/05/tracking-firm-locationsmart-leaked-location-data-for-customers-of-all-major-u-s-mobile-carriers-in-real-time-via-its-web-site/
https://krebsonsecurity.com/2018/05/tracking-firm-locationsmart-leaked-location-data-for-customers-of-all-major-u-s-mobile-carriers-in-real-time-via-its-web-site/
https://www.robertxiao.ca/hacking/locationsmart/

How can we prevent this?

! Standard approach: Use a framework that handles every request, checks
authentication/authorization, then calls your application code

! Experimental/research approaches: Use type systems to track the flow of
information

Level 2: Make sure your dependencies don’t
give information to attackers that ask nicely

Level 2: Make sure your dependencies don’t give information to attackers that
ask nicely

Client Internet

171.67.215.20010.0.4.110 Logic/compute

Logic/compute

172.16.12.50

Persistent data
storage

172.16.12.51

Persistent data
storage

172.16.12.50

Persistent data
storage

172.17.1.100

172.17.1.101
Load

balancer

These servers have IP addresses too!

Elasticsearch

! “Elasticsearch is a distributed, open source search and analytics engine for all
types of data, including textual, numerical, geospatial, structured, and
unstructured” (Elastic website)

○ Used for application search, website search, logging and log analytics,

infrastructure metrics, geospatial data analysis and visualization, etc.

! Extremely handy! You can throw up an Elasticsearch cluster, throw data in

there as it comes in, and quickly run queries on that data

https://www.elastic.co/what-is/elasticsearch

Elasticsearch default settings

! By default, only responds to local connections (i.e. connections coming from
the machine Elasticsearch is installed on)

○ This is a problem if you want to use Elasticsearch in the context of a

cluster of machines

! No problem! Just change the configuration to accept external connections

Elasticsearch default settings

! By default, only responds to local connections (i.e. connections coming from
the machine Elasticsearch is installed on)

○ This is a problem if you want to use Elasticsearch in the context of a

cluster of machines

! No problem! Just change the configuration to accept external connections

HIBP “db8151dd" breach

! Have I Been Pwned is a free service that will notify you if your information has been
found in an online data dump

! Last week, I was notified my data was compromised in a company’s data breach
involving 103M records

○ Big twist: No one has any idea which company!

○ Found on an Elasticsearch instance on the Internet. No one knows who it belongs to

! Records include social media profiles, contact information, addresses, employment
information, and random stuff like “Recommended by Andie [redacted last name].
Arranged for carpenter apprentice Devon [redacted last name] to replace bathroom
vanity top at [redacted street address], Vancouver, on 02 October 2007.”

! Excellent read: https://www.troyhunt.com/the-unattributable-db8151dd-data-breach/

https://haveibeenpwned.com/
https://www.troyhunt.com/the-unattributable-db8151dd-data-breach/

Elasticsearch: It’s not our fault

! According to ES, breaches are caused by “a poor understanding of
Elasticsearch security and how the software works: ‘Reports usually involve
instances where individuals or organizations have actively configured their
installations to allow unauthorized and authenticated users to access their
data over the internet.’” (source)

! I’m picking on Elasticsearch, but if you Google “S3 data breach” or
“MongoDB data breach,” you’ll find just as many severe cases (some are
even worse)

https://www.infosecurity-magazine.com/infosec/why-do-elasticsearch-databases-1-1/

Why does this happen?

! Bad default settings

○ Databases commonly have a default username and password

○ MongoDB used to accept all network connections by default

○ We’re slowly getting better at this

! Negligent/inexperienced engineers and system administrators

○ “I need to access my database from a different server, so let’s open it up on the

network!”

○ Systemic problem: Security is often a poorly-understood afterthought in

organizations

○ I’m not really sure if we’ve been improving very much

! We’ve designed systems where the path of least resistance = bad security

○ It needs to be harder to do things wrong than it is to do things right

○ In many places, only beginning to think about this

Takeaways

! If you run a big service with sensitive information, you have to be regularly
testing for things like this

○ Can configure automated scans to ensure no servers are publicly

reachable that shouldn’t be

○ Pay auditing / penetration testing firms to find weaknesses in your system

! There’s a lot of work to be done in figuring out how to improve security for
systems we don’t operate

○ E.g. Github has started scanning repositories for known vulnerabilities in

dependencies

○ How can we design libraries and frameworks and systems that are secure

by default?

Level 3: Don’t give information to
attackers that don’t ask nicely

Level 3: Don’t give information to attackers that don’t ask nicely

! Imagine you’re trying to hack into a system. How would you go about it?

! Try the easy things first (e.g. finding obvious weaknesses, or social

engineering)

! Next best thing: known vulnerabilities

○ Most of the time, you don’t even need to find new vulnerabilities yourself!
People are generally bad at updating software

○ If your target is using outdated software (e.g. HTTP server, graphics
library, Linux, you name it) with known bugs, you can simply exploit those
bugs

WannaCry

! Ransomware: Encrypts all of the files on your computer and demands Bitcoin
payment before you can get them back

! Estimated 200,000 machines infected across 150 countries, up to $4B in
economic damage

! Crippled National Health Service in UK: infected computers, MRI scanners,
blood storage refrigerators, and more

WannaCry

! Timeline

○ At some point, the NSA discovered an exploitable buffer overflow in the

Windows SMB (file sharing) stack. Did not share it with Microsoft (used it
for offensive exploits)

○ March 14, 2017: Microsoft independently discovers bug, releases patch
and security advisory

○ April 14, 2017: The Shadow Brokers announce they hacked the NSA, and
they release NSA’s EternalBlue exploit

○ May 12, 2017: WannaCry begins to spread across the internet

Equifax breach

! Scope: 143 million affected (basically every adult with a credit history in the US)

! March 7, 2017: Apache releases a patch and a security advisory for a critical

vulnerability in Apache Struts (web application framework)

! Mid-May 2017: attackers use this vulnerability to get RCE in Equifax systems

! July 29, 2017: Equifax finally discovers the breach

! September 7(!!!), 2017: Equifax finally announces they’ve been hacked

! https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-

happened-who-was-affected-what-was-the-impact.html

! https://krebsonsecurity.com/2017/09/equifax-breach-response-turns-

dumpster-fire/

https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://krebsonsecurity.com/2017/09/equifax-breach-response-turns-dumpster-fire/
https://krebsonsecurity.com/2017/09/equifax-breach-response-turns-dumpster-fire/

Update and isolate

! Take the low-hanging fruit: Updating may be annoying, but being compromised is
much worse

! Much of the last decade has been spent trying to figure out how to get people to
update

○ Chrome updates in the background

○ Android has tried to move more functionality into apps that can be updated via

Google Play, since carriers are bad at updating the OS

○ Windows has forced updates now

○ Still more room for creativity!

! Reduce your attack surface: Don’t expose anything to the Internet that doesn’t
need to be exposed to the Internet

Zero days

! The last resort for an attacker is to find a brand new flaw in your system

! If you want to stop the attackers, you have to find and fix the flaws before they do

! This is really hard! Need to pay people to do this

○ Larger tech companies have dedicated security “red teams” that try to find
ways to attack their systems

○ Also a good idea to crowdsource: bug bounty programs pay out to people
that find exploitable vulnerabilities

! If you need high security, you should also be looking for bugs in dependencies

○ Heartbleed (2014): Realized everyone uses OpenSSL, but no one pays for it

○ Google operates an incredible team called Project Zero that hunts for bugs in

any commonly-used software

https://googleprojectzero.blogspot.com/

