
Channels

Ryan Eberhardt and Armin Namavari

May 14, 2020

Logistics

! Congrats on making it through week 6!

! Week 5 exercises due Saturday

! Project 1 due Tuesday

! Let us know if you have questions! We have OH after class

Reconsidering multithreading

Characteristics of multithreading

! Why do we like multithreading?

! It’s fast (lower context switching overhead than multiprocessing)

! It’s easy (sharing data is straightforward when you share memory)

! Why do we not like multithreading?

! It’s easy to mess up: data races

Radical proposition

! What if we didn’t share memory?

○ Could we come up with a way to do multithreading that is just as fast and

just as easy?

! If threads don’t share memory, how are they supposed to work together when

data is involved?

! Golang concurrency slogan: “Do not communicate by sharing memory;

instead, share memory by communicating.” (Effective Go)

! Message passing: Independent threads/processes collaborate by exchanging

messages with each other

○ Can’t have data races because there is no shared memory

https://golang.org/doc/effective_go.html

Communicating Sequential Processes

! Theoretical model introduced in 1978: sequential processes communicate via
by sending messages over “channels”

○ Sequential processes: easy peasy

○ No shared state -> no data races!

! Serves as the basis for newer systems languages such as Go and Erlang

! Also served as an early model for Rust!

○ Channels used to be the only communication/synchronization primitive

! Channels are available in other languages as well (e.g. Boost includes an

implementation for C++)

Channels: like semaphores

Semaphores

thread1

Buffer:
SomeStruct { 
 … 
}

Mutex: Unlocked

Semaphores

thread1

Buffer:
SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait()

Semaphores

thread1

semaphore.wait()

Buffer:
SomeStruct { 
 … 
}

Mutex: Unlocked

Semaphores

thread1

Buffer:
SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait()

Semaphores

thread1

Buffer:
SomeStruct { 
 … 
}

Mutex: Unlocked

mutex.lock()

Semaphores

thread1

Buffer:
SomeStruct { 
 … 
}

Mutex: Locked

mutex.lock()

Semaphores

thread1

Buffer:

SomeStruct { 
 … 
}

Mutex: Locked

Semaphores

thread1

Buffer:

SomeStruct { 
 … 
}

Mutex: Locked

mutex.unlock()

Semaphores

thread1

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

mutex.unlock()

Semaphores

thread1

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait() (again)

Semaphores

thread1 (blocked)

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait() (again)

Semaphores

thread1 (blocked) thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait() (again)

Semaphores

thread1 (blocked) thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait() (again) mutex.lock()

Semaphores

thread1 (blocked) thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Locked

semaphore.wait() (again) mutex.lock()

Semaphores

thread1 (blocked) thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Locked

semaphore.wait() (again)

Semaphores

thread1 (blocked) thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Locked

semaphore.wait() (again) mutex.unlock()

Semaphores

thread1 (blocked) thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait() (again) mutex.unlock()

Semaphores

thread1 (blocked) thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait() (again) semaphore.signal()

Semaphores

thread1 (blocked) thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait() (again) semaphore.signal()

Semaphores

thread1 thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait() (again)

Semaphores

thread1 thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

semaphore.wait() (again)

Semaphores

thread1 thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

mutex.lock()

Semaphores

thread1 thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Locked

mutex.lock()

Semaphores

thread1 thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Locked

Semaphores

thread1 thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Locked

mutex.unlock()

Semaphores

thread1 thread2

SomeStruct { 
 … 
}

Buffer:

SomeStruct { 
 … 
}

Mutex: Unlocked

mutex.unlock()

SomeStruct { 
 … 
}

Channels

thread1

SomeStruct { 
 … 
}

Channels

thread1

let struct = receive_end.recv().unwrap()

SomeStruct { 
 … 
}

Channels

let struct = receive_end.recv().unwrap()

thread1

SomeStruct { 
 … 
}

Channels

thread1

let struct = receive_end.recv().unwrap()

SomeStruct { 
 … 
}

Channels

thread1

let struct2 = receive_end.recv().unwrap() (again)

Channels

thread1 (blocked)

SomeStruct {  
 … 
}

let struct2 = receive_end.recv().unwrap() (again)

Channels

thread1 (blocked) thread2

SomeStruct {  
 … 
}

let struct2 = receive_end.recv().unwrap() (again)

Channels

thread1 (blocked) thread2

SomeStruct {  
 … 
}

SomeStruct {  
 … 
}

send_end.send(struct).unwrap()let struct2 = receive_end.recv().unwrap() (again)

Channels

thread1 (blocked) thread2

SomeStruct {  
 … 
}

SomeStruct { 
 … 
}

send_end.send(struct).unwrap()let struct2 = receive_end.recv().unwrap() (again)

Channels

thread1 thread2

SomeStruct {  
 … 
}

SomeStruct { 
 … 
}

let struct2 = receive_end.recv().unwrap() (again)

Channels

thread1 thread2

SomeStruct {  
 … 
}

SomeStruct { 
 … 
}

let struct2 = receive_end.recv().unwrap() (again)

Channels: like strongly-typed pipes

Chrome architecture diagram

https://www.chromium.org/developers/design-documents/multi-process-architecture (slightly out of date)

Inter-Process Communication channels:
Pipes, but with an extra layer of

abstraction to serialize/deserialize objects

https://www.chromium.org/developers/design-documents/multi-process-architecture

Using channels

Isn’t message passing bad for performance?

! If you don’t share memory, then you need to copy data into/out of messages.
That seems expensive. What gives?

! Theory != practice

○ We share some memory (the heap) and only make shallow copies into

channels

Partly-shared memory (shallow copies only)

thread1 thread2

Vec {
 len: 6,  
 alloc_len: 16, 
 data: Box<>, 
}

Heap
[3, 4, 5, 6, 7, 8]

Partly-shared memory (shallow copies only)

thread1 thread2

Vec {
 len: 6,  
 alloc_len: 16, 
 data: Box<>, 
}

Heap
[3, 4, 5, 6, 7, 8]

Partly-shared memory (shallow copies only)

thread1 thread2

Vec {
 len: 6,  
 alloc_len: 16, 
 data: Box<>, 
}

Heap
[3, 4, 5, 6, 7, 8]

Partly-shared memory (shallow copies only)

thread1 thread2

Vec {
 len: 6,  
 alloc_len: 16, 
 data: Box<>, 
}

Heap
[3, 4, 5, 6, 7, 8]

Partly-shared memory (shallow copies only)

thread1 thread2

Vec {
 len: 6,  
 alloc_len: 16, 
 data: Box<>, 
}

Heap
[3, 4, 5, 6, 7, 8]

Isn’t message passing bad for performance?

! If you don’t share memory, then you need to copy data into/out of messages. That
seems expensive. What gives?

! Theory != practice

○ We share some memory (the heap) and only make shallow copies into channels

! In Go, passing pointers is potentially dangerous! Channels make data races less
likely but don’t preclude races if you use them wrong

! In Rust, passing pointers (e.g. Box) is always safe despite sharing memory

○ When you send to a channel, ownership of value is transferred to the channel

○ The compiler will ensure you don’t use a pointer after it has been moved into

the channel

Channel APIs and implementations

! The ideal channel is an MPMC (multi-producer, multi-consumer) channel

○ We implemented one of these on Tuesday! A simple Mutex<VecDeque<>>

with a CondVar

○ However, that approach is much slower than we’d like. (Why?)

! It’s really, really hard to implement a fast and safe MPMC channel!

○ Go’s channels are known for being slow

■ They essentially implement Mutex<VecDeque<>>, but using a “fast
userspace mutex” (futex)

○ A fast implementation needs to use lock-free programming techniques to
avoid lock contention and reduce latency

Channel APIs and implementations

! The Rust standard library includes an MPSC (multi-producer, single-
consumer) channel, but it’s not ideal (one of the oldest APIs in Rust stdlib)

○ Great if you want multiple threads to send to one thread (e.g. aggregating

results of an operation)

○ Also great for thread-to-thread communication (superset of SPSC)

○ Not so great if you want to distribute data/work (e.g. a work queue)

○ Additionally, the API has some oddities (great article)

○ There’s a good chance this channel implementation will be replaced within

the next year or two (discussion)

https://stjepang.github.io/2017/08/13/designing-a-channel.html
https://stjepang.github.io/2019/03/02/new-channels.html

Channel APIs and implementations

! The crossbeam crate recently (2018) added an excellent MPMC
implementation

○ “If we were to redo Rust channels from scratch, how should they look?”

Much improved API

○ Mostly lock free

○ Even faster than the existing MPSC channels

○ Great read here

○ Likely to replace the stdlib channels in some capacity

https://docs.rs/crossbeam/0.7.3/crossbeam/
https://stjepang.github.io/2019/01/29/lock-free-rust-crossbeam-in-2019.html#channels-improving-on-mpsc-and-go

Heap

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

channel {
 senders: 1,
 receivers: 1,
 …
}

Thread 1 stack

Sender

Receiver

Heap

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {

channel {
 senders: 1,
 receivers: 1,
 …
}

Thread 1 stack

Sender

Receiver

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();

Heap

channel {
 senders: 1,
 receivers: 1,
 …
}

Thread 1 stack

Sender

Receiver

Heap

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();

channel {
 senders: 1,
 receivers: 1,
 …
}

Thread 1 stack

Sender

Receiver

Receiver

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || { Heap

channel {
 senders: 1,
 receivers: 1,
 …
}

Thread 1 stack

Sender

Receiver

Receiver

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

Heap

channel {
 senders: 1,
 receivers: 1,
 …
}

Thread 1 stack

Sender

Receiver

Receiver

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

Heap

channel {
 senders: 1,
 receivers: 1,
 …
}

Thread 1 stack

Sender

Receiver

Receiver

Thread 2 stack

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

Heap

channel {
 senders: 1,
 receivers: 2,
 …
}

Thread 1 stack

Sender

Receiver

Receiver

Thread 2 stack

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

Heap

channel {
 senders: 1,
 receivers: 2,
 …
}

Thread 1 stack

Sender

Receiver

Receiver

Read until recv() returns Err (i.e. until
the channel is closed)

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

 let stdin = std::io::stdin();
 for line in stdin.lock().lines() {
 let num = line.unwrap().parse::<u32>().unwrap();

Thread 2 stack

Heap

channel {
 senders: 1,
 receivers: 2,
 …
}

Thread 1 stack

Sender

Receiver

Receiver

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

 let stdin = std::io::stdin();
 for line in stdin.lock().lines() {
 let num = line.unwrap().parse::<u32>().unwrap();
 sender
 .send(num)
 .expect("Tried writing to channel, but there are no receivers!");
 }

Thread 2 stack

Heap

channel {
 senders: 1,
 receivers: 2,
 …
}

Thread 1 stack

Sender

Receiver

Receiver

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

 let stdin = std::io::stdin();
 for line in stdin.lock().lines() {
 let num = line.unwrap().parse::<u32>().unwrap();
 sender
 .send(num)
 .expect("Tried writing to channel, but there are no receivers!");
 }

 drop(sender);

Thread 2 stack

Heap

channel {
 senders: 1,
 receivers: 2,
 …
}

Thread 1 stack

Sender

Receiver

Receiver

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

 let stdin = std::io::stdin();
 for line in stdin.lock().lines() {
 let num = line.unwrap().parse::<u32>().unwrap();
 sender
 .send(num)
 .expect("Tried writing to channel, but there are no receivers!");
 }

 drop(sender);

Thread 2 stack

Heap

channel {
 senders: 0,
 receivers: 2,
 …
}

Thread 1 stack

Receiver

Receiver

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

 let stdin = std::io::stdin();
 for line in stdin.lock().lines() {
 let num = line.unwrap().parse::<u32>().unwrap();
 sender
 .send(num)
 .expect("Tried writing to channel, but there are no receivers!");
 }

 drop(sender);

Thread 2 stack

Heap

channel {
 senders: 0,
 receivers: 2,
 …
}

Thread 1 stack

Receiver

Receiver

Channel is closed! Worker
threads will break out of while

loop

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

 let stdin = std::io::stdin();
 for line in stdin.lock().lines() {
 let num = line.unwrap().parse::<u32>().unwrap();
 sender
 .send(num)
 .expect("Tried writing to channel, but there are no receivers!");
 }

 drop(sender);

Heap

channel {
 senders: 0,
 receivers: 1,
 …
}

Thread 1 stack

Receiver

Implementing farm v3.0
fn main() {
 let (sender, receiver) = crossbeam::channel::unbounded();

 let mut threads = Vec::new();
 for _ in 0..num_cpus::get() {
 let receiver = receiver.clone();
 threads.push(thread::spawn(move || {
 while let Ok(next_num) = receiver.recv() {
 factor_number(next_num);
 }
 }));
 }

 let stdin = std::io::stdin();
 for line in stdin.lock().lines() {
 let num = line.unwrap().parse::<u32>().unwrap();
 sender
 .send(num)
 .expect("Tried writing to channel, but there are no receivers!");
 }

 drop(sender);

 for thread in threads {
 thread.join().expect("Panic occurred in thread");
 }  
}

Heap

channel {
 senders: 0,
 receivers: 1,
 …
}

Thread 1 stack

Receiver

Pick the right tool for the job

! Using channels is often much simpler and safer than using mutexes + CVs

○ Even in Rust, mutexes can still cause problems if you lock/unlock at the

wrong times

○ E.g. semaphore will break if you unlock after cv.wait() and then re-lock

before decrementing the counter. You hold the lock while touching the
counter, so the compiler doesn’t complain, but there is still a race
condition

! However, channels aren’t always the best choice

○ Not very well suited for global values (e.g. caches or global counters)

