Channels

Ryan Eberhardt and Armin Namavari

May 14, 2020

Logistics

Congrats on making it through week 6!

Week 5 exercises due Saturday

Project 1 due Tuesday

Let us know if you have questions! We have OH after class

Reconsidering multithreading

Characteristics of multithreading

e Why do we like multithreading?
e |t’s fast (lower context switching overhead than multiprocessing)
e |t’s easy (sharing data is straightforward when you share memory)
e Why do we not like multithreading?
e |[t's easy to mess up: data races

Radical proposition

e What if we didn’t share memory?

o Could we come up with a way to do multithreading that is just as fast and
just as easy?

e |[f threads don’t share memory, how are they supposed to work together when
data is involved?

e (Golang concurrency slogan: “Do not communicate by sharing memory;
Instead, share memory by communicating.” (Effective Go)

e Message passing: Independent threads/processes collaborate by exchanging
messages with each other
o (Can’t have data races because there is no shared memory

https://golang.org/doc/effective_go.html

Communicating Sequential Processes

e T[heoretical model introduced in 1978: sequential processes communicate via
by sending messages over “channels”
o Seqguential processes: easy peasy
o No shared state -> no data races!

e Serves as the basis for newer systems languages such as Go and Erlang

e Also served as an early model for Rust!
o Channels used to be the only communication/synchronization primitive

e C(Channels are available in other languages as well (e.g. Boost includes an
implementation for C++)

Channels: like semaphores

Semaphores

Mutex: Unlockead

&

/

/\

thread

Buffer:

SomesStruct {

}

Semaphores

semaphore.wait()

&

Mutex: Unlockead

/

/\

thread

Buffer:

SomesStruct {

}

Semaphores

semaphore.wait()

(>

Mutex: Unlockead

/\

thread

Buffer:

SomesStruct {

}

Semaphores

semaphore.wait()

S

Mutex: Unlockead

/\

thread

Buffer:

%

SomesStruct {

}

Semaphores

Mutex: Unlockead

mutex.lock()

S

/\

thread

Buffer:

%

SomesStruct {

}

Semaphores

Mutex: Locked

mutex.lock()

S

/\

thread

Buffer:

%

SomesStruct {

}

Semaphores

@
Somestruct {

- @

/\

thread

Mutex: Locked Buffer: ‘ ‘

Semaphores

mutex.unlock()

@
Somestruct {

- @

/\

thread

Mutex: Locked Buffer: ‘ ‘

Semaphores

mutex.unlock()

@
Somestruct {

- @

/\

thread

Mutex: Unlocked Buffer: ‘ ‘

Semaphores

semaphore.wait() (again)

@
SomesStruct {

- @

/\

thread

Mutex: Unlocked Buffer: ‘ ‘

Semaphores

semaphore.wait() (again)

SomesStruct { Q

)
N\

°o/\

thread1 (blocked)

Mutex: Unlocked Buffer: ‘ ‘

Semaphores

semaphore.wait() (again)

@
SomesStruct {

o \
AN

SomesStruct {

}

o/ /\

thread1 (blocked) thread?

Mutex: Unlocked Buffer: ‘

Semaphores

semaphore.wait() (again) mutex.lock()
@
Somestruct {
} N SomesStruct {
N }

o/ /\

thread1 (blocked) thread?

Mutex: Unlocked Buffer: ‘

Semaphores

semaphore.wait() (again) mutex.lock()
@
Somestruct {
} N SomesStruct {
N }

o/ /\

thread1 (blocked) thread?

Mutex: Locked Buffer: ‘

Semaphores

semaphore.wait() (again)

@
SomesStruct {

o \
AN

o/ /\

thread1 (blocked) thread?

SomesStruct {
Mutex: Locked Buffer:

}

Semaphores

semaphore.wait() (again) mutex.unlock()
O
Somestruct {
- AN
N\

o/ /\

thread1 (blocked) thread?

SomesStruct {
Mutex: Locked Buffer:

}

Semaphores

semaphore.wait() (again) mutex.unlock()
O
Somestruct {
- AN
N\

o/ /\

thread1 (blocked) thread?

SomesStruct {
Mutex: Unlocked Buffer:

}

Semaphores

semaphore.wait() (again)

SomesStruct {

}

Mutex: Unlockead

A

°o/\

thread1 (blocked)

Buffer:

semaphore.signal()

&

N

/\

thread?

SomesStruct {

}

Semaphores

semaphore.wait() (again)

SomesStruct {

}

Mutex: Unlockead

A

°o/\

thread1 (blocked)

Buffer:

semaphore.signal()

9

/\

thread?

SomesStruct {

}

Semaphores

semaphore.wait() (again)

(>

SomesStruct {

}

Mutex: Unlockead

°o/\

thread

Buffer:

/\

thread?

SomesStruct {

}

Semaphores

semaphore.wait() (again)

S

SomesStruct {

}

Mutex: Unlockead

/

°o/\

thread

Buffer:

o

/\

thread?

SomesStruct {

}

Semaphores

Somestruct {

}

Mutex: Unlockead

mutex.lock()

S

/

°o/\

thread

Buffer:

o

/\

thread?

SomesStruct {

}

Semaphores

Somestruct {

}

Mutex: Locked

mutex.lock()

S

/

°o/\

thread

Buffer:

o

/\

thread?

SomesStruct {

}

Semaphores

@ @
Somestruct {

}

SomesStruct {

}

o/ /\

thread thread?

Mutex: Locked Buffer: ‘

Semaphores

mutex.unlock()

@ @
Somestruct {

- @

SomesStruct {

}

o/ /\

thread thread?

Mutex: Locked Buffer: ‘

Semaphores

mutex.unlock()

@ @
SomesStruct {

- @

SomesStruct {

}

o/ /\

thread thread?

Mutex: Unlocked Buffer: ‘

Channels

thread

Channels

let struct = receive_end.recv().unwrap()

thread

Channels

let struct = receive_end.recv().unwrap()

/

thread

Channels

let struct = receive_end.recv().unwrap()

&

SomesStruct {

Vs
J

/\

thread

Channels

let struct?2 = receive_end.recv().unwrap() (again)

&

SomesStruct {

s
J

/\

thread

Channels

let struct?2 = receive_end.recv().unwrap() (again)

(>

N\

SomesStruct { /
- \

thread1 (blocked)

Channels

let struct?2 = receive_end.recv().unwrap() (again)

O O

N\

}So.n.w.eStruct { /\ /\

thread1 (blocked) thread?

Channels

let struct?2 = receive_end.recv().unwrap() (again) send_end.send(struct).unwrap()
SomesStruct |{
\ } \

}So.n.w.eStruct { /\ /\

thread1 (blocked) thread?

Channels

let struct?2 = receive_end.recv().unwrap() (again) send_end.send(struct).unwrap()

SomesStruct { / \
- \

thread1 (blocked) thread?

Channels

let struct?2 = receive_end.recv().unwrap() (again)

SomesStruct { /
J

thread thread?

Channels

let struct?2 = receive_end.recv().unwrap() (again)

SR ®

SomesStruct {

/}

}So.n.w.eStruct { /\ /\

thread thread?

Channels: like strongly-typed pipes

Chrome architecture diagram

: Filter

RenderProcessHost RenderViewHost

g RenderViewHost
g 2 Channel : : RenderProcessHost
- - i RenderViewHost §
g § .J'JJ.I".’JLICC*:----------,' I,li-:;rl':i-.:-r_trlz-:ad :
Inter-Process Communication channels: & Renderiow
. . — | RenderProcess
Pipes, but with an extra layer of E RenderView
abstraction to serialize/deserialize objects : : e
= ' Renderer ¥

g.

https://www.chromium.org/developers/design-documents/multi-process-architecture (slightly out of date)

https://www.chromium.org/developers/design-documents/multi-process-architecture

Using channels

Isn’t message passing bad for performance?

e |f you don’t share memory, then you need to copy data into/out of messages.
That seems expensive. What gives”?
e [heory != practice
o We share some memory (the heap) and only make shallow copies into
channels

Partly-shared memory (shallow copies only)

& ()

\Vec {
len: 6,
alloc_len: 16,
/ data: Box<>, \
-/
thread1 thread?

Heap

[3,4, 5,6, 7, 8]

Partly-shared memory (shallow copies only)

\

thread1 thread?

Heap ’
[3,4,5,6,7, 8]

Partly-shared memory (shallow copies only)

thread1 thread?

Heap ’
[3,4,5,6,7, 8]

Partly-shared memory (shallow copies only)

/

thread1 thread?

Heap ’
[3,4,5,6,7, 8]

Partly-shared memory (shallow copies only)

thread1 thread?

Heap \
[3,4,5,6,7, 8]

Isn’t message passing bad for performance?

e |f you don’t share memory, then you need to copy data into/out of messages. That
seems expensive. What gives?
e T[heory != practice
o We share some memory (the heap) and only make shallow copies into channels
e In Go, passing pointers is potentially dangerous! Channels make data races less
likely but don’t preclude races if you use them wrong
e |n Rust, passing pointers (e.g. Box) is always safe despite sharing memory
o When you send to a channel, ownership of value is transferred to the channel
o The compiler will ensure you don’t use a pointer after it has been moved into
the channel

Channel APIs and implementations

e The ideal channel is an MPMC (multi-producer, multi-consumer) channel
o We implemented one of these on Tuesday! A simple Mutex<VecDeque<>>
with a CondVar
o However, that approach is much slower than we’d like. (Why?)
e |t’s really, really hard to implement a fast and safe MPMC channel!
o (@Go’s channels are known for being slow
= They essentially implement Mutex<VecDeque<>>, but using a “fast
userspace mutex” (futex)
o A fast implementation needs to use lock-free programming techniques to
avoid lock contention and reduce latency

Channel APIs and implementations

e T[he Rust standard library includes an MPSC (multi-producer, single-
consumer) channel, but it’s not ideal (one of the oldest APIs in Rust stdlib)
o @Great if you want multiple threads to send to one thread (e.g. aggregating
results of an operation)
Also great for thread-to-thread communication (superset of SPSC)
Not so great if you want to distribute data/work (e.g. a work queue)
Additionally, the APIl has some oddities (great article)
There’s a good chance this channel implementation will be replaced within
the next year or two (discussion)

o O O O

https://stjepang.github.io/2017/08/13/designing-a-channel.html
https://stjepang.github.io/2019/03/02/new-channels.html

Channel APIs and implementations

e The crossbeam crate recently (2018) added an excellent MPMC
Implementation
o “If we were to redo Rust channels from scratch, how should they look?”

Much improved API

Mostly lock free

Even faster than the existing MPSC channels

Great read here

Likely to replace the stdlib channels in some capacity

o O O O

https://docs.rs/crossbeam/0.7.3/crossbeam/
https://stjepang.github.io/2019/01/29/lock-free-rust-crossbeam-in-2019.html#channels-improving-on-mpsc-and-go

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

Heap
Thread 1 stack
channel {
Sender senders: 1,
receivers: 1,
Receiver
}

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new()

for 1in O..num cpus::get() {
Heap
Thread 1 stack

channel {

Sender senders: 1,
receivers: 1,

Receiver

}

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();
for in O0..num cpus::get() {

let receiver = receiver.clone();

Heap
Thread 1 stack
channel {
Sender senders: 1,
receivers: 1,
Receiver
}

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();
for in O0..num cpus::get() {

let receiver = receiver.clone();
Thread 1 stack Heap
Sender channel {
senders: 1,
Recelver receivers: 1,

Receiver)

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();
for in O0..num cpus::get() {

let receiver = receiver.clone();
threads.push(thread: :spawn(move || {

Thread 1 stack

Sender

Recelver

Recelver

Heap

channel {
senders: 1,
receivers: 1,

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();

for in O0..num cpus::get() {
let receiver = receiver.clone();
threads.push(thread: :spawn(move || { Thread 1 stack Heap
while let Ok(next num) = receiver.recv() {
factor number (next num); Sender channel {
.} senders: 1,
} 1)) Receiver receivers: 1,
Receiver }

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();
for in O0..num cpus::get() {

let receiver = receiver.clone
threads.push(thread: : spaw Thread 1 stack Heap
while let Ok(next num) recv() {
factor number (next num Sender channel {
.} senders: 1,
1)) Receiver receivers: 1,

Receiver)

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();

for in 0..num cpus::get() { Thread 1 stack
let receiver = receiver.clone();
threads.push(thread: :spawn(move || { Sender Heap
while let Ok(next num) = receiver.recv() {
factor number (next num); :
) Receiver channel {
" senders: 1,
) ! receivers: 2,
Thread 2 stack)
Receiver

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();

for 1n O0..num cpus::get() {
let receiver = receiver.clone();
threads.push(thread: :spawn(move || {
‘while let Ok(next num) = receiver.recv() {‘
factor number (next num);
})).} Read until recv() returns Err (i.e. until
) the channel is closed)

Thread 1 stack

Sender

Recelver

Thread 2 stack

Recelver

Heap

channel {
senders: 1,
receivers: 2,

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();

for 1in O..num cpus::get() {
let receiver = receiver.clone();
threads.push(thread: :spawn(move || {
while let Ok(next num) = receiver.recv() {

factor number (next num);

1))
}

let stdin = std::i10::stdin();
for line in stdin.lock().lines() {
let num = line.unwrap().parse::<u32>().unwrap();

Thread 1 stack

Sender

Recelver

Thread 2 stack

Recelver

Heap

channel {
senders: 1,
receivers: 2,

Implementing farm v3.0

fn main() {

let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();

for 1in O..num cpus::get() {
let receiver = receiver.clone();
threads.push(thread: :spawn(move || {
while let Ok(next num) = receiver.recv() {

factor number (next num);

1))

let stdin = std::i10::stdin();

Thread 1 stack

Sender

Recelver

Thread 2 stack

Heap

channel {
senders: 1,
receivers: 2,

for line 1in std}n. lock().lines() { Receiver
let num = line.unwrap().parse::<u32>().unwrap();
sender
. send (num)
.expect("Tried writing to channel, but there are no receivers!");

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();

for 1n O0..num cpus::get() { Thread 1 stack
let receiver = receiver.clone();
threads.push(thread: :spawn(move || { Sender Heap
while let Ok(next num) = receiver.recv() {
factor number (next num);
} _ (_num) Receiver channel { |
) senders: 1,
} 1)) receivers: 2,
let stdin = std::io::stdin(); Thread 2 stack }
for line in stdin.lock().lines() { Receiver
let num = line.unwrap().parse::<u32>().unwrap();
sender
. send (num)
.expect("Tried writing to channel, but there are no receivers!");
}

drop(sender) ;

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();

for 1n O0..num cpus::get() {
let receiver = receiver.clone();
threads.push(thread: :spawn(move || { Thread 1 stack Heap
while let Ok(next num) = receiver.recv() { .
factor number?next num) ; Receiver
_ _ 7 channel {
.} senders: 0,
}))i receivers: 2,
} Thread 2 stack
let stdin = std::io::stdin(); Receiver }
for line in stdin.lock().lines() {
let num = line.unwrap().parse::<u32>().unwrap();
sender
. send (num)
.expect("Tried writing to channel, but there are no receivers!");

}

drop(sender) ;

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();

for 1n O0..num cpus::get() {
let receiver = receiver.clone();
threads.push(thread: :spawn(move || { Thread 1 stack Heap
while let Ok(next num) = receiver.recv() { .
— Receiver
factor number (next num); channel{
.} senders: O,
1)) receivers: 2,
} Thread 2 stack
let stdin = std::io::stdin(); Receiver j
for line in stdin.lock().lines() {
let num = line.unwrap().parse::<u32>().unwrap();
sender
.send (num) Channel is closed! Worker
.expect("Tried writing to channel, but there are no receivers!"); threads will break out of while

} loop

drop(sender) ;

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();

for 1n O..num cpus::get() {
let receiver = receiver.clone();
threads.push(thread: :spawn(move || { Heap
while let Ok(next num) = receiver.recv() {
factor number (next num); Thread 1 stack channel {
} senders: O,
} 1)) Recelver receivers: 1,
let stdin = std::i10::stdin(); }
for line in stdin.lock().lines() {
let num = line.unwrap().parse::<u32>().unwrap();
sender
. send (num)
.expect("Tried writing to channel, but there are no receivers!");
}

drop(sender) ;

Implementing farm v3.0

fn main() {
let (sender, receiver) = crossbeam::channel::unbounded();

let mut threads = Vec::new();

for 1in O..num cpus::get() {
let receiver = receiver.clone();
threads.push(thread: :spawn(move || {
while let Ok(next num) = receiver.recv() {
factor number (next num); Thread 1 stack
}
})); Recelver
}
let stdin = std::i10::stdin();
for line in stdin.lock().lines() {
let num = line.unwrap().parse::<u32>().unwrap();
sender
. send (num)
.expect("Tried writing to channel, but there are no receivers!");
}

drop(sender) ;

for thread in threads {
thread.join() .expect("Panic occurred in thread");

}

Heap

channel {
senders: O,
receivers: 1,

Pick the right tool for the job

e Using channels is often much simpler and safer than using mutexes + CVs
o Even in Rust, mutexes can still cause problems if you lock/unlock at the
wrong times
o E.g. semaphore will break if you unlock after cv.wait() and then re-lock
before decrementing the counter. You hold the lock while touching the
counter, so the compiler doesn’t complain, but there is still a race
condition
e However, channels aren’t always the best choice
o Not very well suited for global values (e.g. caches or global counters)

