Multithreading in Rust:
Synchronization

Ryan Eberhardt and Armin Namavari

May 12, 2020




Link Explorer

e You and your friends are bored so
you decided to play a game where
you go to a random Wikipedia page
and try to find a link to another

EXPLORE & RACE THROUGH WIKIPEDIA!

A WIKI 8 GAME o c

SIXLL WIKI GAME GROUPS

St
wikipedia page that is the longest (by Dysentery .
length of the html) Revolver
e Trust me, it’s fun! R o coou | cmmscon
e You decide to enlist Rust (along with Sl L —

the reqwest and select crates) to
help you.



Sequential Link Explorer

The most straightforward approach
No threads => no race conditions :)
Let’s see how fast it is...

(code)



Multithreaded Link Explorer

e The web requests are network bound, so we can easily overlap the wait
times for these requests by running them in separate threads.
e You can see this runs considerably faster!
e Problems
e We have this funky batching thing going on — What’s wrong with it?
e \We can easily reuse threads (really, we should be using a threadpool
which you will implement in assignment 6 of CS110)

real 2m55.927s

real ®Om9.932s

user @Om7 .964s user Omo.843s

Sys Oml.722s

Sys @ml.926s
Sequential Multithreaded



Can we do better than batching...?

e First of all, why did we need batching?
e \What happens if | just make the batch size really big...
e What’s a more effective way to limit the number of active threads/outgoing
connections?
e You saw in CS110 lecture that we can use condition variables and
semaphores to impose a limit on the number of “permission slips”
e You will see this again in Assignment 5 (News Aggregator) — as an
exercise, you may wish to upgrade the link explorer example to impose
limits in this way!



Condition Variables in C++

Lecture 10: Multithreading and Condition Variables

 The semaphore constructor is so short that it's inlined right in the declaration of the
semaphore class.
» semaphore:wait is our generalization of waitForPermission.

ivoid semaphore::wait() {

lock guard<mutex> lg(m);

cv.wait(m, [this] { return value > 0; })

i value--;

)

__________________________________________

« Why does the capture clause include the this keyword?

= Because the anonymous predicate function passed to cv.wait is just that—a
regular function. Since functions aren't normally entitled to examine the private
state of an object, the capture clause includes this to effectively convert the bool-
returning function into a bool-returning semaphore method.

» semaphore::signal is our generalization of grantPermission.

void semaphore::signal() {
lock guard<mutex> 1lg(m);
value+t++;
if (value == 1) cv.notify all();

}




Condition Variables in Rust

e |diomatic to associate a condition variable with a mutex by putting them in a
pair together and wrapping that pair in an Arc.
e \We clone this pair before we move it into a thread.
e Recall: we are NOT cloning the mutex, but rather a (reference-counted)
pointer to it!
e You pass in the return value of mutex.lock().unwrap() to cv.wait(...) (or
cv.wait_while(...))
e The Mutex<T> and Condvar interfaces in Rust enable us to write shorter,
safer, and more legible code.
e We'll see this in today’s live-coding example.



SemaPlusPlus

e Semaphores can mediate access to a limited resource through giving out a
limited number of “permission slips.” They can also synchronize threads to
wait until a piece of data is ready (see producer/consumer) — we’ll focus on
this second use case in the following example.

e But they only let you increment and decrement — let’s do something more
interesting.

e |Instead of just sema.signal — let’s do sema.send (msg)

e Instead of just sema.wait — lets’ do sema.recv() (which returns a msg that
was previously sent)

e Why might we want an abstraction like this?



SemaPlusPlus

Iﬂﬂ‘ﬂﬂd 1 Som.Sond (vamp_ s sult)

(o st = St PhusBs: MH
pu
M’ ﬁm Z som de(MSg ImDm)

Main /
Thiegd | =i Mw s (Mg )

L .\ Y— 0P tepo1d Msm.m(mp_m,,)
Sgm.recv() > erf

//
Stm. recv()— "“Thn W%M Sem. Wd[’”Sg'IMDM)

Som.ieov () = "Sethivy weid Pppura
som .t () = V7F result
som . wtCv() = "I dme”




SemaPlusPlus Implementation

e Starter code
e Finished Example



https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=0def84d531137fdff735e6c69f0e0fd1
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=935c42cd7f214368562932b3138de2e8

