
Multithreading in Rust:
Synchronization

Ryan Eberhardt and Armin Namavari

May 12, 2020

Link Explorer

! You and your friends are bored so
you decided to play a game where
you go to a random Wikipedia page
and try to find a link to another
wikipedia page that is the longest (by
length of the html)

! Trust me, it’s fun!

! You decide to enlist Rust (along with
the reqwest and select crates) to
help you.

Sequential Link Explorer

! The most straightforward approach

! No threads => no race conditions :^)

! Let’s see how fast it is…

! (code)

Multithreaded Link Explorer

! The web requests are network bound, so we can easily overlap the wait
times for these requests by running them in separate threads.

! You can see this runs considerably faster!

! Problems

! We have this funky batching thing going on — What’s wrong with it?

! We can easily reuse threads (really, we should be using a threadpool

which you will implement in assignment 6 of CS110)

Sequential Multithreaded

Can we do better than batching…?

! First of all, why did we need batching?

! What happens if I just make the batch size really big…

! What’s a more effective way to limit the number of active threads/outgoing
connections?

! You saw in CS110 lecture that we can use condition variables and

semaphores to impose a limit on the number of “permission slips”

! You will see this again in Assignment 5 (News Aggregator) — as an

exercise, you may wish to upgrade the link explorer example to impose
limits in this way!

Condition Variables in C++

Condition Variables in Rust

! Idiomatic to associate a condition variable with a mutex by putting them in a
pair together and wrapping that pair in an Arc.

! We clone this pair before we move it into a thread.

! Recall: we are NOT cloning the mutex, but rather a (reference-counted)

pointer to it!

! You pass in the return value of mutex.lock().unwrap() to cv.wait(…) (or

cv.wait_while(…))

! The Mutex<T> and Condvar interfaces in Rust enable us to write shorter,

safer, and more legible code.

! We’ll see this in today’s live-coding example.

SemaPlusPlus

! Semaphores can mediate access to a limited resource through giving out a
limited number of “permission slips.” They can also synchronize threads to
wait until a piece of data is ready (see producer/consumer) — we’ll focus on
this second use case in the following example.

! But they only let you increment and decrement — let’s do something more
interesting.

! Instead of just sema.signal — let’s do sema.send (msg)

! Instead of just sema.wait — lets’ do sema.recv() (which returns a msg that

was previously sent)

! Why might we want an abstraction like this?

SemaPlusPlus

SemaPlusPlus Implementation

! Starter code

! Finished Example

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=0def84d531137fdff735e6c69f0e0fd1
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=935c42cd7f214368562932b3138de2e8

