
Multithreading in Rust:
Shared Data

Ryan Eberhardt and Armin Namavari

May 7, 2020

Extroverts demo (CS 110)
static const char *kExtroverts[] = {
 "Frank", "Jon", "Lauren", "Marco", "Julie", "Patty",
 "Tagalong Introvert Jerry"
};
static const size_t kNumExtroverts = sizeof(kExtroverts)/sizeof(kExtroverts[0]) - 1;

static void *recharge(void *args) {
 const char *name = kExtroverts[*(size_t *)args];
 printf("Hey, I'm %s. Empowered to meet you.\n", name);
 return NULL;
}

int main() {
 printf("Let's hear from %zu extroverts.\n", kNumExtroverts);
 pthread_t extroverts[kNumExtroverts];
 for (size_t i = 0; i < kNumExtroverts; i++)
 pthread_create(&extroverts[i], NULL, recharge, &i);
 for (size_t j = 0; j < kNumExtroverts; j++)
 pthread_join(extroverts[j], NULL);
 printf("Everyone's recharged!\n");
 return 0;
}

Passes a pointer to i, but then the
main thread changes i on the
next iteration of the for loop

Cplayground

https://cplayground.com/?p=chinchilla-antelope-whale

Can we do the same in Rust?

use std::thread;

const NAMES: [&str; 7] = ["Frank", "Jon", "Lauren", "Marco", "Julie", "Patty",
 "Tagalong Introvert Jerry"];

fn main() {
 let mut threads = Vec::new();
 for i in 0..6 {
 threads.push(thread::spawn(|| {
 println!("Hello from printer {}!", NAMES[i]);
 }));
 }
 // wait for all the threads to finish
 for handle in threads {
 handle.join().expect("Panic occurred in thread!");
 }
}

Rust playground

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=4141caf1577219e8dd96d16409ab6816

Can we do the same in Rust?

error[E0373]: closure may outlive the current function, but it borrows `i`, which is owned by the
current function
 --> src/main.rs:9:36
 |
9 | threads.push(thread::spawn(|| {
 | ^^ may outlive borrowed value `i`
10 | println!("Hello from printer {}!", NAMES[i]);
 | - `i` is borrowed here
 |
note: function requires argument type to outlive `'static`
 --> src/main.rs:9:22
 |
9 | threads.push(thread::spawn(|| {
 | ______________________^
10 | | println!("Hello from printer {}!", NAMES[i]);
11 | | }));
 | |__________^
help: to force the closure to take ownership of `i` (and any other referenced variables), use the
`move` keyword
 |
9 | threads.push(thread::spawn(move || {
 | ^^^^^^^

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=3ee846b7cc8127b788bde031e9381b24
https://doc.rust-lang.org/stable/error-index.html#E0373
https://play.rust-lang.org/#
https://play.rust-lang.org/#

Can we do the same in Rust?

error[E0373]: closure may outlive the current function, but it borrows `i`, which is owned by the
current function
 --> src/main.rs:9:36
 |
9 | threads.push(thread::spawn(|| {
 | ^^ may outlive borrowed value `i`
10 | println!("Hello from printer {}!", NAMES[i]);
 | - `i` is borrowed here
 |
note: function requires argument type to outlive `'static`
 --> src/main.rs:9:22
 |
9 | threads.push(thread::spawn(|| {
 | ______________________^
10 | | println!("Hello from printer {}!", NAMES[i]);
11 | | }));
 | |__________^
help: to force the closure to take ownership of `i` (and any other referenced variables), use the
`move` keyword
 |
9 | threads.push(thread::spawn(move || {
 | ^^^^^^^

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=3ee846b7cc8127b788bde031e9381b24
https://doc.rust-lang.org/stable/error-index.html#E0373
https://play.rust-lang.org/#
https://play.rust-lang.org/#

Can we do the same in Rust?

use std::thread;

const NAMES: [&str; 7] = ["Frank", "Jon", "Lauren", "Marco", "Julie", "Patty",
 "Tagalong Introvert Jerry"];

fn main() {
 let mut threads = Vec::new();
 for i in 0..6 {
 threads.push(thread::spawn(move || {
 println!("Hello from printer {}!", NAMES[i]);
 }));
 }
 // wait for all the threads to finish
 for handle in threads {
 handle.join().expect("Panic occurred in thread!");
 }
}

Rust playground

Closure function takes ownership of i
(under the hood, value of i is copied
into thread’s stack)

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=4141caf1577219e8dd96d16409ab6816

Ticket agents demo (CS 110)
static void ticketAgent(size_t id, size_t& remainingTickets) {
 while (remainingTickets > 0) {
 handleCall(); // sleep for a small amount of time to emulate conversation time.
 remainingTickets--;
 cout << oslock << "Agent #" << id << " sold a ticket! (" << remainingTickets
 << " more to be sold)." << endl << osunlock;
 if (shouldTakeBreak()) // flip a biased coin
 takeBreak(); // if comes up heads, sleep for a random time to take a break
 }
 cout << oslock << "Agent #" << id << " notices all tickets are sold, and goes home!"
 << endl << osunlock;
}

int main(int argc, const char *argv[]) {
 thread agents[10];
 size_t remainingTickets = 250;
 for (size_t i = 0; i < 10; i++)
 agents[i] = thread(ticketAgent, 101 + i, ref(remainingTickets));
 for (thread& agent: agents) agent.join();
 cout << "End of Business Day!" << endl;
 return 0;
}

Multiple threads get mutable
reference to remainingTickets

Value decremented simultaneously: ends up underflowing!

Cplayground

https://cplayground.com/?p=caterpillar-dragonfly-grouse

Attempt 1: Just Pass it in :^)

fn main() {
 let mut remainingTickets = 250;

 let mut threads = Vec::new();
 for i in 0..10 {
 threads.push(thread::spawn(|| {
 ticketAgent(i, &mut remainingTickets)
 }));
 }
 // wait for all the threads to finish
 for handle in threads {
 handle.join().expect("Panic occurred in thread!");
 }
 println!("End of business day!");
}

Rust playground

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=1d4e7507ce7e9b9010510ad663fbf843

Attempt 2: RefCell and Rc

! Oh right, we need to move the value in

! Let’s just use RefCell and Rc

! Let's see how the Rust compiler feels about it

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=f0890f3f3d9519737994ef89fb2aa3e2

Attempt 3: Mutex and Arc

! We need to have memory that we can safely share between threads

! You can think of “Arc” as a thread safe version of the Rc safe pointer

! You can think of “Mutex” as a thread safe version of RefCell that allows

exclusive access to the piece of data it wraps.

! Association between the lock and the data it protects!

! Deadlock danger: although the lock is released once the value returned by

“.lock()” is dropped, you can still create situations with deadlock.

! Finished Example

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=40eb333837649c136fa8533031d233f5

Send and Sync

! Marker traits — you don’t implement functions for them, they serve a symbolic
purpose

! Send: Transfer ownership (move) between threads

! Rc can’t be Send: what if you clone() an Rc (so there are two handles to the

underlying object + reference count), give one of those handles to a different
thread, and the two threads update the reference count at the same time?

! Arc implements the Send trait since the refcount update happens atomically.
So does Mutex

! Sync: Allow this thing to be referenced from multiple threads

! Mutex and Arc both implement Sync.

! Read more here

https://doc.rust-lang.org/book/ch16-04-extensible-concurrency-sync-and-send.html

Link Explorer

! You and your friends are bored so
you decided to play a game where
you go to a random Wikipedia page
and try to find a link to another
wikipedia page that is the longest (by
length of the html)

! Trust me, it’s fun!

! You decide to enlist Rust (along with
the reqwest and select crates) to
help you.

Sequential Link Explorer

! The most straightforward approach

! No threads => no race conditions :^)

! Let’s see how fast it is…

! (code)

Multithreaded Link Explorer

! The web requests are network bound, so we can easily overlap the wait
times for these requests by running them in separate threads.

! You can see this runs considerably faster!

! Problems

! We have this funky batching thing going on — it’s not super flexible and
generalizable (what if we want to dynamically handle requests?)

! We can easily reuse threads (really, we should be using a threadpool
which you will implement in assignment 6 of CS110)

Sequential Multithreaded

Next time

! Other synchronization primitives

! Beyond shared memory

