
Multiprocessing (part 2)

Ryan Eberhardt and Armin Namavari

April 30, 2020

Project logistics

! Project (mini gdb) coming out tomorrow, due May 18

! You’re also welcome to propose your own project! Run your idea by us

before you start working on it

! Rust tooling (e.g. annotate code showing where values get dropped)

! Write a raytracer

! Pick a command-line tool and try to beat its performance (e.g. grep)

! Implement a simple database

Today

! (From last time) Why you shouldn’t use signal() 🔥🚒

! Multiprocessing case study of Google Chrome

Don’t call signal()

signal() is dead. Long live sigaction()

signal() is dead. Long live sigaction()

Portability

The only portable use of signal() is to set a signal's disposition to SIG_DFL or SIG_IGN. The
semantics when using signal() to establish a signal handler vary across systems (and
POSIX.1 explicitly permits this variation); do not use it for this purpose.

POSIX.1 solved the portability mess by specifying sigaction(2), which provides explicit
control of the semantics when a signal handler is invoked; use that interface instead of
signal().

Check out the man page if you have time!

https://linux.die.net/man/2/sigaction

Exit on ctrl+c

void handler(int sig) {
 exit(0);
}

int main() {
 signal(SIGINT, handler);
 while (true) {
 sleep(1);
 }
 return 0;
}

Looks good! ✅

static volatile int sigchld_count = 0;

void handler(int sig) {
 sigchld_count += 1;
}

int main() {
 signal(SIGCHLD, handler);
 const int num_processes = 10;
 for (int i = 0; i < num_processes; i++) {
 if (fork() == 0) {
 sleep(1);
 exit(0);
 }
 }
 while (waitpid(-1, NULL, 0) != -1) {}
 printf("All %d processes exited, got %d SIGCHLDs.\n",
 num_processes, sigchld_count);
 return 0;
}

Count number of SIGCHLDs received

Okay if we were to use sigaction ⚠

Count number of running processes

Not safe (concurrent use of running_processes) 🚫

static volatile int running_processes = 0;

void handler(int sig) {
 while (waitpid(-1, NULL, WNOHANG) > 0) {
 running_processes -= 1;
 }
}

int main() {
 signal(SIGCHLD, handler);
 const int num_processes = 10;
 for (int i = 0; i < num_processes; i++) {
 if (fork() == 0) {
 sleep(1);
 exit(0);
 }
 running_processes += 1;
 printf("%d running processes\n", running_processes);
 }
 while(running_processes > 0) {
 pause();
 }
 printf("All processes exited! %d running processes\n", running_processes);
 return 0;
}

Print on ctrl+c

void handler(int sig) {
 printf("Hehe, not exiting!\n");
}

int main() {
 signal(SIGINT, handler);
 while (true) {
 printf("Looping...\n");
 sleep(1);
 }
 return 0;
}

Not safe!! 🚫

Print on ctrl+c

void handler(int sig) {
 printf("Hehe, not exiting!\n");
}

int main() {
 signal(SIGINT, handler);
 while (true) {
 printf("Looping...\n");
 sleep(1);
 }
 return 0;
}

Not safe!! 🚫

int main() {
 const char* message = "Hello world ";
 const size_t repeat = 1000;

 char *repeated_msg = malloc(repeat * strlen(message) + 2);
 for (int i = 0; i < repeat; i++) {
 strcpy(repeated_msg + (i * strlen(message)), message);
 }
 repeated_msg[repeat * strlen(message)] = '\n';
 repeated_msg[repeat * strlen(message) + 1] = '\0';

 signal(SIGUSR1, print_hello);
 if (fork() == 0) {
 pid_t parent_pid = getppid();
 while (true) {
 kill(parent_pid, SIGUSR1);
 }
 return 0;
 }

 while (true) {
 printf(repeated_msg);
 }

 free(repeated_msg);
 return 0;
}

void print_hello(int sig) {
 printf("Hello world!\n");
}

Async-safe functions

! vfprintf is a 1787-line function!

1309 /* Lock stream. */  
1310 _IO_cleanup_region_start ((void (*) (void *)) &_IO_funlockfile, s);  
1311 _IO_flockfile (s);

! Apparently also does some other async-unsafe business

! You should avoid functions that use global state

! Many functions do this, even if you may not realize it

! malloc and free are not async-signal-safe!

! List of safe functions: http://man7.org/linux/man-pages/man7/signal-safety.
7.html

http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man7/signal-safety.7.html

What should we do?

Avoiding signal handling

! Anything substantial should not be done in a signal handler

! How can we handle signals, then?

! The “self-pipe” trick was invented in the early 90s:

! Create a pipe

! When you’re awaiting a signal, read from the pipe (this will block until

something is written to it)

! In the signal handler, write a single byte to the pipe

https://cr.yp.to/docs/selfpipe.html

Avoiding signal handling

! signalfd added official support for this hack
int main(int argc, char *argv[]) {
 sigset_t mask;
 int sfd;
 struct signalfd_siginfo fdsi;
 ssize_t s;

 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);
 sigaddset(&mask, SIGQUIT);

 /* Block signals so that they aren't handled
 according to their default dispositions */

 if (sigprocmask(SIG_BLOCK, &mask, NULL) == -1)
 handle_error("sigprocmask");

 sfd = signalfd(-1, &mask, 0);
 if (sfd == -1) handle_error("signalfd");

 for (;;) {
 s = read(sfd, &fdsi,
 sizeof(struct signalfd_siginfo));
 if (s != sizeof(struct signalfd_siginfo))
 handle_error("read");

 if (fdsi.ssi_signo == SIGINT) {
 printf("Got SIGINT\n");
 } else if (fdsi.ssi_signo == SIGQUIT) {
 printf("Got SIGQUIT\n");
 exit(EXIT_SUCCESS);
 } else {
 printf("Read unexpected signal\n");
 }
 }

http://man7.org/linux/man-pages/man2/signalfd.2.html

What about asynchronous signal handling?

! I thought part of the benefit of signal handlers was you can handle events
asynchronously! (You can be doing work in your program, and quickly take a
break to do something to handle a signal)

! Reading from a pipe or signalfd precludes concurrency: I’m either doing work,
or reading to wait for a signal, but not both at the same time

! How can we address this?

! Use threads

! Can still have concurrency problems!

! But we have more tools to reason about and control those problems

! Use non-blocking I/O (week 8)

Ctrlc crate

! Rust has a ctrlc crate: register a function to be executed on ctrl+c (SIGINT)

! How does it work?

! Creates a self-pipe

! Installs a signal handler that writes to the pipe when SIGINT is received

! Spawns a thread: loop { read from pipe; call handler function; }

! The Rust borrow checker prevents data races caused by concurrent access/
modification from threads. If your handler function touches data in a racey
way, the compiler will complain

https://github.com/Detegr/rust-ctrlc

Why is this different?

! printf from signal handler can deadlock:

! printf from main body of code calls flock()

! signal handler interrupts execution. printf from signal handler calls flock()

! signal handler can’t continue until main code releases lock, but main code

can’t continue until the signal handler exits

! printf from threads are safe:

! printf from main thread calls flock()

! printf from signal handling thread calls flock() and is blocked

! printf from main thread finishes

! printf from signal handling thread finishes

! malloc() calls (including the ones printf makes) work similarly.

Why is this different?

! Threads and signal handlers have the same concurrency problems

! But the scheduling of code is completely different

! Threads:

! Multiple (usually) equal-priority threads of execution that constantly swap on the
processor

! Can use locks to protect data

! Signal handlers:

! Handler will completely preempt all other code and hog the CPU until it finishes

! Can’t use locks or any other synchronization primitives

! In fact, signal handlers should avoid all kinds of blocking! (Why?)

! Consequently, signal handlers play very poorly with library code. Libraries don’t know

what signal handlers you have installed or what those signal handlers do, so they can’t
disable signal handling to protect themselves from concurrency problems

Google Chrome

Processes

pid = 1000

stack

heap
data/globals

code

1 2 3 …

%rax %rbx %rcx
%rdx %rsp %rip

saved registers:

file descriptor table:

pid = 1001

stack

heap
data/globals

code

1 2 3 …

%rax %rbx %rcx
%rdx %rsp %rip

saved registers:

file descriptor table:

Processes can synchronize using signals and pipes

pipe

pipe

SIGS
TOP

Threads

pid = 1000

stack

heap
data/globals

code

1 2 3 …

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

file descriptor table:

tid = 1001
stack

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

tid = 1002
stack

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

Threads are similar to processes; they have a separate stack and saved registers (and
a handful of other separated things). But they share most resources across the process

Threads

…

pid = 1000
stack1

heap

data/globals

code

1 2 3 …

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

file descriptor table:

tid = 1001

stack2

1 2 3

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

file descriptor table:

Under the hood, a thread gets its own “process control block” and is scheduled
independently, but it is linked to the process that spawned it

Considerations when designing a browser

! Speed

! Memory usage

! Battery/CPU usage

! Ease of development

! Security, stability

Considerations when designing a browser

! Speed

! Typically faster to share memory and to use lightweight synchronization primitives

! Memory usage

! Processes use more memory

! Battery/CPU usage

! Threads incur less context switching overhead

! Ease of development

! Communication is WAY easier using threads

! (That being said, bugs caused by multithreading are extremely hard to track

down)

! Security, stability

! Multiprocessing provides isolation. Multithreading does not.

Modern browsers are essentially operating systems

https://developer.mozilla.org/en-US/docs/Web/API

https://developer.mozilla.org/en-US/docs/Web/API

Modern browsers are essentially operating systems

! Storage APIs

! Concurrency APIs

! Hardware APIs (e.g. communicate with MIDI devices, even GPU)

! Run assembly

! Run Windows 95: https://win95.ajf.me/

https://win95.ajf.me/

Motivation for Chrome

It's nearly impossible to build a rendering engine that never crashes or hangs. It's also nearly
impossible to build a rendering engine that is perfectly secure.
In some ways, the state of web browsers around 2006 was like that of the single-user, co-
operatively multi-tasked operating systems of the past. As a misbehaving application in such
an operating system could take down the entire system, so could a misbehaving web page in
a web browser. All it took is one browser or plug-in bug to bring down the entire browser and
all of the currently running tabs.
Modern operating systems are more robust because they put applications into separate
processes that are walled off from one another. A crash in one application generally does not
impair other applications or the integrity of the operating system, and each user's access to
other users' data is restricted.

https://www.chromium.org/developers/design-documents/multi-process-architecture

https://www.chromium.org/developers/design-documents/multi-process-architecture

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for
several reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future

Chrome releases. There were 10 potentially exploitable bugs in renderer components in
M69, 5 in M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite
years of investment into developer education, fuzzing, Vulnerability Reward Programs, etc.
Note that this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years
of investment into developer education, fuzzing, Vulnerability Reward Programs,
etc. Note that this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned
into an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Aside: What does Firefox’s architecture look like?

Chrome architecture

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1
(great read!)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Chrome architecture

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1
(great read!)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Chrome architecture

https://www.chromium.org/developers/design-documents/multi-process-architecture (slightly out of date)

IPC channels = pipes

Sandboxed processes: no access
to network, filesystem, etc

If there is embedded content, may
use multiple threads to render that
content and manage
communication between frames

Events (e.g. click,
keystroke, etc) are
relayed through
these pipes! No
signals

Message passing model

https://www.chromium.org/developers/design-documents/multi-process-architecture

Not good enough

! What does all this work buy us?

! Isolation between tabs

! Isolation between (potentially malicious) websites and the host

! What does it not buy us?

! Isolation between resources within a tab

Not good enough

http://www.evil.com

Welcome to Evil!

PIN: 1234

Same-origin policy: www.evil.com can embed bank.com, but cannot interact with
bank.com or see its data

Not good enough

! Site Isolation Project (2015-2019) aimed to put resources for different origins in
different processes

! Extremely difficult undertaking. Cross-frame communication is common (JS
postMessage API), and embedded frames need to share render buffers

! Involved rearchitecting the most core parts of Chrome

! Became especially important in Jan 2018: Spectre and Meltdown

! When the hardware fails to uphold its guarantees, JS can read arbitrary

process memory (even kernel memory, and even if your software has no
bugs)!

! Paper/video: https://www.usenix.org/conference/usenixsecurity19/presentation/
reis

https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis

Anatomy of a sandbox escape

! https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html (2012 but
it’s more accessible than some other writeups)

! First exploit chains together six bugs to escape the sandbox

! Second one uses ten(!!)

! https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-
escaping.html (2019)

https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html

More relevant reading

! How Chrome does fork(): 
http://neugierig.org/software/chromium/notes/2011/08/zygote.html  
Fun related bug report: https://bugs.chromium.org/p/chromium/issues/detail?id=35793

What steps will reproduce the problem?
1. Develop a webapp, use chrome's devtools, minding your own business
2. In the meantime, let chrome silently autoupdate in the background

What is the expected result?
Devtools continue working

What happens instead?
Devtools break after refreshing the page after the autoupdate happened.

http://neugierig.org/software/chromium/notes/2011/08/zygote.html
https://bugs.chromium.org/p/chromium/issues/detail?id=35793

