
Multiprocessing

Ryan Eberhardt and Armin Namavari

April 28, 2020

Hello week 4!

You’re killing it!! 🎉 🔥

Class logistics

! Week 3 exercises due Wednesday

! Please let us know if you get stuck / feel confused! We want you to

sleep!

! Also, remember you can substitute any week’s exercises for a blog post

if you’d like!

! First project (mini GDB) will be coming out late this week, due two weeks later

! You’ll be free to work with a partner!

! We’ll have some way for you to find someone to work with if you’d like

(suggestions welcome)

! No exercise this week (just the survey)

This week

! Taking a brief break from Rust-land!

! Today: why you shouldn’t use fork(), pipe(), or signal() 🔥🚒

! Thursday: multiprocessing case study of Google Chrome

Don’t call fork()

Why fork? 🍴

! Get concurrent execution (i.e. run another piece of your own program at the
same time)

! Invoke external functionality on the system (i.e. run a different executable)

Concurrent execution

! How might we mess this up? (live code)

Concurrent execution

! How might we mess this up?

! Accidentally nesting forks when spawning multiple child processes

! Runaway children

! Using data structures when threads are involved

! Failure to clean up (zombie processes)

Concurrent execution

! I argue: It’s better to take the code you want to run concurrently and put it in
a separate executable

! You won’t inherit data from the parent process’s virtual address space,

but that’s the point

! Use arguments or pipes to provide whatever information is needed for

the child process to run

Why fork? 🍴

! Get concurrent execution (i.e. run another piece of your own program at the
same time)

! Invoke external functionality on the system (i.e. run a different executable)

Invoking external functionality

! How do you start a subprocess?

! fork(), then exec()

! Almost every fork() is followed by an exec()

! Why didn’t they just make a combined syscall?

Child processes in Windows

BOOL CreateProcessW(
 LPCWSTR lpApplicationName,
 LPWSTR lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 BOOL bInheritHandles,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCWSTR lpCurrentDirectory,
 LPSTARTUPINFOW lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

BOOL CreateProcessAsUserW(
 HANDLE hToken,
 LPCWSTR lpApplicationName,
 LPWSTR lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 BOOL bInheritHandles,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCWSTR lpCurrentDirectory,
 LPSTARTUPINFOW lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

fork() and exec() rationale

! The Unix approach is simple and powerful

! You can make any desired customizations to your child process before it

executes the desired binary

! Change environment variables, rewire file descriptors, block/unblock

signals, take control of the terminal, enable debugging, etc.

! Simple != easy

! malloc() and free() are simple, too!

Common multiprocessing tactic

! Let fork() and exec() be. The power is there if you need it.

! Define a higher-level abstraction to take care of the common cases

! You’re implementing one such simple abstraction in CS 110 assign3!

! Usually, these abstractions allow a “pre-exec function” to be specified,

which is called after fork() but before exec()

! With such an abstraction, really no reason to call fork() or exec()!

Command in Rust

! Build a Command: 
Command::new("ps")  
 .args(&["--pid", &pid.to_string(), "-o", "pid= ppid= command="])

! Run, and get the output in a buffer: 
let output = Command::new("ps")  
 .args(&["--pid", &pid.to_string(), "-o", "pid= ppid= command="])  
 .output()  
 .expect("Failed to execute subprocess”)

! Includes exit status, stdout, and stderr

Command in Rust

! Run (without swallowing output), and get the status code: 
let status = Command::new("ps")  
 .args(&["--pid", &pid.to_string(), "-o", "pid= ppid= command="])  
 .status()  
 .expect("Failed to execute subprocess")

! Spawn and immediately return: 
let child = Command::new("ps")  
 .args(&["--pid", &pid.to_string(), "-o", "pid= ppid= command="])  
 .spawn()  
 .expect("Failed to execute subprocess")

! This returns a Child, which you need to wait on at some point! 

let status = child.wait()

Command in Rust

! Pre-exec function: 
use std::os::unix::process::CommandExt;  
...  
let cmd = Command::new("ls");  
unsafe {  
 cmd.pre_exec(function_to_run);  
}  
let child = cmd.spawn();

! The unsafe block acts as a warning to avoid allocating memory or accessing

shared data in the presence of threads

! It’s quite rare that you would need to specify a pre_exec function (the Command

API takes care of most things), but you’ll need it for Project 1

Concurrent execution

! How might we mess this up?

! Accidentally nesting forks when spawning multiple child processes

! Runaway children

! Using data structures when threads are involved

! Failure to clean up (zombie processes)

! You could implement a struct with a Drop trait that calls wait()

Don’t call pipe()

Problems with pipes

What can you think of?

Problems with pipes

! Leaked file descriptors

! Calling close() on bad values 

Example: 
if (close(fds[1] == -1)) {  
 printf("Error closing!");  
}

! Use-before-pipe (i.e. use of uninitialized ints)

! Use-after-close

Potential solution

! Add a layer of abstraction!

! Writing to a stdin pipe: 

let mut child = Command::new("cat")  
 .stdin(Stdio::piped())  
 .stdout(Stdio::piped())  
 .spawn()?;  
child.stdin.as_mut().unwrap().write_all(b"Hello, world!\n")?;  
let output = child.wait_with_output()?;

! The os_pipe crate allows for creating arbitrary pipes. (The Drop trait closes
the pipe.)

https://stackoverflow.com/a/49597789
https://docs.rs/os_pipe/0.9.1/os_pipe/

Aside

Don’t call signal()

Is it safe?

! Discuss in groups

! Introduce yourself!

! See Lecture Notes on course website

(Continued next time)

