Multiprocessing

Ryan Eberhardt and Armin Namavari

April 28, 2020




Hello week 4!

You're killing it!! &5 ¢



Class logistics

e Week 3 exercises due Wednesday
e Please let us know if you get stuck / feel confused! We want you to
sleep!
e Also, remember you can substitute any week’s exercises for a blog post
if you'd like!
e First project (mini GDB) will be coming out late this week, due two weeks later
e You’'ll be free to work with a partner!
e We’ll have some way for you to find someone to work with if you’d like
(suggestions welcome)
e No exercise this week (just the survey)



This week

e Taking a brief break from Rust-land!
e Today: why you shouldn’t use fork(), pipe(), or signal() Y-
e Thursday: multiprocessing case study of Google Chrome



Don’t call fork()




Why fork? If

e (et concurrent execution (i.e. run another piece of your own program at the
same time)
e Invoke external functionality on the system (i.e. run a different executable)



Concurrent execution

e How might we mess this up? (live code)



Concurrent execution

e How might we mess this up?
e Accidentally nesting forks when spawning multiple child processes
e Runaway children
e Using data structures when threads are involved
e Failure to clean up (zombie processes)



Concurrent execution

e | argue: It’s better to take the code you want to run concurrently and put it in

a separate executable

e You won’t inherit data from the parent process’s virtual address space,
but that’s the point

e Use arguments or pipes to provide whatever information is needed for
the child process to run



Why fork? If

e Invoke external functionality on the system (i.e. run a different executable)



Invoking external functionality

e How do you start a subprocess?
e fork(), then exec()
e Almost every fork() is followed by an exec|)
e Why didn’t they just make a combined syscall?



Child processes in Windows

BOOL CreateProcessW(
LPCWSTR
LPWSTR

LPSECURITY ATTRIBUTES
LPSECURITY ATTRIBUTES

BOOL

DWORD

LPVOID

LPCWSTR
LPSTARTUPINFOW

lpApplicationName,
lpCommandLine,
lpProcessAttributes,
lpThreadAttributes,
bInheritHandles,
dwCreationFlags,
lpEnvironment,
lpCurrentDirectory,
lpStartupInfo,

LPPROCESS_INFORMATION lpProcessInformation

BOOL CreateProcessAsUserW(

HANDLE

LPCWSTR

LPWSTR

LPSECURITY ATTRIBUTES
LPSECURITY ATTRIBUTES
BOOL

DWORD

LPVOID

LPCWSTR
LPSTARTUPINFOW

hToken,
lpApplicationName,
lpCommandLine,
lpProcessAttributes,
lpThreadAttributes,
bInheritHandles,
dwCreationFlags,
lpEnvironment,
lpCurrentDirectory,
lpStartupInfo,

LPPROCESS INFORMATION lpProcessInformation



fork() and exec() rationale

e The Unix approach is simple and powerful
e You can make any desired customizations to your child process before it
executes the desired binary
e (Change environment variables, rewire file descriptors, block/unblock
signals, take control of the terminal, enable debugging, etc.
e Simple = easy
e malloc() and free() are simple, too!



Common multiprocessing tactic

e Let fork() and exec() be. The power is there if you need it.
e Define a higher-level abstraction to take care of the common cases
e You’re implementing one such simple abstraction in CS 110 assign3!
e Usually, these abstractions allow a “pre-exec function” to be specified,
which is called after fork() but before exec()
e With such an abstraction, really no reason to call fork() or exec()!



Command In Rust

e Build a Command:
Command: :new("ps")
.args(&["--pid", &pid.to string(), "-o", "pid= ppid= command="1])
e Run, and get the output in a buffer:
let output = Command::new("ps")
.args(&["--pid", &pid.to_string(), "-o", "pid= ppid= command="1])
.output ()

.expect("Failed to execute subprocess”)

e Includes exit status, stdout, and stderr



Command In Rust

e Run (without swallowing output), and get the status code:
let status = Command::new("ps")
.args(&["--pid", &pid.to string(), "-o", "pid= ppid= command="])
.status()
.expect("Failed to execute subprocess")
e Spawn and immediately return:
let child = Command: :new("ps")
.args(&["--pid", &pid.to_string(), "-o", "pid= ppid= command="])
.spawn()
.expect("Failed to execute subprocess")

e Thisreturns a Child, which you need to wait on at some point!
let status = child.wait()



Command In Rust

e Pre-exec function:

use std::os::unix::process: :CommandExt;

let cmd = Command::new("1ls");
unsafe {

cmd.pre exec(function to run);

}
let child = cmd.spawn();

e The unsafe block acts as a warning to avoid allocating memory or accessing
shared data in the presence of threads

e It’s quite rare that you would need to specify a pre_exec function (the Command
API takes care of most things), but you’ll need it for Project 1



Concurrent execution

e How might we mess this up?

o / ental g forl | . tinle child
e Runaway-children
o Usi lata struct hen il I rvolved
e Failure to clean up (zombie processes)
e You could implement a struct with a Drop trait that calls wait()



Don’t call pipe()




Problems with pipes

What can you think of?



Problems with pipes

e Leaked file descriptors
e (alling close() on bad values

Example:

if (close(fds[l] == -1)) {

printf ("Error closing!");

}
e Use-before-pipe (i.e. use of uninitialized ints)
e Use-after-close



Potential solution

e Add a layer of abstraction!
e \Writing to a stdin pipe:
let mut child = Command::new('"cat")
.stdin(Stdio::piped())
.stdout (Stdio::piped())
.Spawn()?;
child.stdin.as mut().unwrap().write all(b"Hello, world!\n")?;
let output = child.wait with output()?;
e The os pipe crate allows for creating arbitrary pipes. (The Drop trait closes
the pipe.)



https://stackoverflow.com/a/49597789
https://docs.rs/os_pipe/0.9.1/os_pipe/




Don’t call signal()




|s it safe?

e Discuss in groups
e Introduce yourself!
e See Lecture Notes on course website



(Continued next time)



