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Hello week 4!

You're killing it!! &5 ¢



Class logistics

e Week 3 exercises due Wednesday
e Please let us know if you get stuck / feel confused! We want you to
sleep!
e Also, remember you can substitute any week’s exercises for a blog post
if you'd like!
e First project (mini GDB) will be coming out late this week, due two weeks later
e You’'ll be free to work with a partner!
e We’ll have some way for you to find someone to work with if you’d like
(suggestions welcome)
e No exercise this week (just the survey)



This week

e Taking a brief break from Rust-land!
e Today: why you shouldn’t use fork(), pipe(), or signal() Y-
e Thursday: multiprocessing case study of Google Chrome



Don’t call fork()




Why fork? If

e (et concurrent execution (i.e. run another piece of your own program at the
same time)
e Invoke external functionality on the system (i.e. run a different executable)



Concurrent execution

e How might we mess this up? (live code)



Concurrent execution

e How might we mess this up?
e Accidentally nesting forks when spawning multiple child processes
e Runaway children
e Using data structures when threads are involved
e Failure to clean up (zombie processes)



Concurrent execution

e | argue: It’s better to take the code you want to run concurrently and put it in

a separate executable

e You won’t inherit data from the parent process’s virtual address space,
but that’s the point

e Use arguments or pipes to provide whatever information is needed for
the child process to run



Why fork? If

e Invoke external functionality on the system (i.e. run a different executable)



Invoking external functionality

e How do you start a subprocess?
e fork(), then exec()
e Almost every fork() is followed by an exec|)
e Why didn’t they just make a combined syscall?



Child processes in Windows
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fork() and exec() rationale

e The Unix approach is simple and powerful
e You can make any desired customizations to your child process before it
executes the desired binary
e (Change environment variables, rewire file descriptors, block/unblock
signals, take control of the terminal, enable debugging, etc.
e Simple = easy
e malloc() and free() are simple, too!



Common multiprocessing tactic

e Let fork() and exec() be. The power is there if you need it.
e Define a higher-level abstraction to take care of the common cases
e You’re implementing one such simple abstraction in CS 110 assign3!
e Usually, these abstractions allow a “pre-exec function” to be specified,
which is called after fork() but before exec()
e With such an abstraction, really no reason to call fork() or exec()!



Command In Rust

e Build a Command:
Command: :new("ps")
.args(&["--pid", &pid.to string(), "-o", "pid= ppid= command="1])
e Run, and get the output in a buffer:
let output = Command::new("ps")
.args(&["--pid", &pid.to_string(), "-o", "pid= ppid= command="1])
.output ()

.expect("Failed to execute subprocess”)

e Includes exit status, stdout, and stderr



Command In Rust

e Run (without swallowing output), and get the status code:
let status = Command::new("ps")
.args(&["--pid", &pid.to string(), "-o", "pid= ppid= command="])
.status()
.expect("Failed to execute subprocess")
e Spawn and immediately return:
let child = Command: :new("ps")
.args(&["--pid", &pid.to_string(), "-o", "pid= ppid= command="])
.spawn()
.expect("Failed to execute subprocess")

e Thisreturns a Child, which you need to wait on at some point!
let status = child.wait()



Command In Rust

e Pre-exec function:

use std::os::unix::process: :CommandExt;

let cmd = Command::new("1ls");
unsafe {

cmd.pre exec(function to run);

}
let child = cmd.spawn();

e The unsafe block acts as a warning to avoid allocating memory or accessing
shared data in the presence of threads

e It’s quite rare that you would need to specify a pre_exec function (the Command
API takes care of most things), but you’ll need it for Project 1



Concurrent execution

e How might we mess this up?

o / ental g forl | . tinle child
e Runaway-children
o Usi lata struct hen il I rvolved
e Failure to clean up (zombie processes)
e You could implement a struct with a Drop trait that calls wait()



Don’t call pipe()




Problems with pipes

What can you think of?



Problems with pipes

e Leaked file descriptors
e (alling close() on bad values

Example:

if (close(fds[l] == -1)) {

printf ("Error closing!");

}
e Use-before-pipe (i.e. use of uninitialized ints)
e Use-after-close



Potential solution

e Add a layer of abstraction!
e \Writing to a stdin pipe:
let mut child = Command::new('"cat")
.stdin(Stdio::piped())
.stdout (Stdio::piped())
.Spawn()?;
child.stdin.as mut().unwrap().write all(b"Hello, world!\n")?;
let output = child.wait with output()?;
e The os pipe crate allows for creating arbitrary pipes. (The Drop trait closes
the pipe.)



https://stackoverflow.com/a/49597789
https://docs.rs/os_pipe/0.9.1/os_pipe/




Don’t call signal()




|s it safe?

e Discuss in groups
e Introduce yourself!
e See Lecture Notes on course website



(Continued next time)



