
Smart Pointers

Ryan Eberhardt and Armin Namavari

April 23, 2020



The Plan for Today

! Review Box<T>

! Introduce Rc<T>

! Introduce RefCell<T>



Please ask Questions!

! Or else I will happily blast through the slides

! Feel free to unmute yourself

! Ryan: “At the end of the quarter, I’ll randomly select at least three people that 

participated 10 times, and I’ll make you a custom mug (see @paintedpeas) if 
you’re still around campus once I can access a ceramics studio again. 
Asking or answering a question in lecture (out loud, or in the chat) or on 
Slack all count as participation.”

https://www.instagram.com/paintedpeas/


Box<T>

! You’ve seen this already in the context of LinkedList

! Have a unique pointer to a chunk of heap memory

! What are some limitations of Box<T>?



Rc<T>

! What if I want to have multiple pointers to the same chunk of heap memory?

! Recall borrowing rules: can have multiple immutable references OR at most 

one mutable reference.

! Rc<T> lets you have multiple immutable references to a chunk of heap 

memory (i.e. we can’t modify this chunk of memory)

! Why do we need this?

! A: Rust’s borrow checking rules!


! Caution: you can get memory leaks if you create reference cycles! (if you 
need reference cycles, you need to throw other smart pointer types into the 
mix)



Example: Adding Multiple Views to Our List

! What if we want to be able to have our linked lists “intersect” one another so 
that they can share certain parts while the data structure is immutable? (this 
is a paradigm common in functional data structures)


! This can let us see into the “history” of our data structure!

! These are sometimes known as persistent data structures

! Playground example


! Start 

! End 

Image: https://doc.rust-lang.org/book/ch15-04-rc.html

https://en.wikipedia.org/wiki/Persistent_data_structure
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=8fa1a1e08c5264d7ba9e0fbe18ff5a70
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=d0738eb6fb7748501bb783e1f203b937
https://doc.rust-lang.org/book/ch15-04-rc.html


RefCell<T>

! RefCell let’s you “lie” to the compiler by providing interior mutability

! That is, you can have shared references to the cell, but you can mutate what’s 

inside of it!

! Its new function doesn’t heap allocate, here are the things that do.

! This is still safe because it will enforce the reference rules at runtime (but this is 

now an additional cost)

! (try_)borrow/borrow_mut

! Common pattern: Rc<RefCell<T>>


! You will often see this in fancier data structures that have multiple pointers 
pointing to the same piece of data, which might have to support mutability

https://doc.rust-lang.org/stable/alloc/index.html


Additional Reading

! The Rust book on Rc

! The Rust book on RefCell

! CS242 on Smart Pointers (this will show you how Box and Rc are 

implemented under the hood!)

! Quora thread about applications of persistent data structures (e.g. version 

control, optimizing React applications)

! Concurrency

https://doc.rust-lang.org/book/ch15-04-rc.html
https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
http://cs242.stanford.edu/f19/lectures/07-2-smart-pointers
https://www.quora.com/What-are-some-applications-of-persistent-data-structures-like-persistent-segment-tree-and-persistent-trie
https://stackoverflow.com/questions/16891659/how-does-concurrency-using-immutable-persistent-types-and-data-structures-work

