Ownership (cont.) and
Error Handling

Ryan Eberhardt and Armin Namavari

April 14, 2020

Congrats on finishing week 1!

How much time did you spend on the week 1 exercises?

26 responses

@ 30 mins - 1 hour
@® 1-2 hours
@ 2-3 hours

/ @ 3-4 hours
__‘ @ In total probably longer than 4 hours.

But, | probably learned far more about...
® 4-5 hours
@ Probably a little more than 3 hours but...
@ 5+ i like usefully procrastinating (readi...
®55

., ! g e, D
;;,‘ é’ :«‘3’)5 lll_llléirgand g T\ S ’O%&WQQ 6’
& & tennitely helpiul: &2 o0 >~/

G5 |
SSE -/ § /()\;';3“"" N 20
\) - 1049,/’) _

COS
\Q 4 Rusts

ﬂﬂﬂﬂﬂﬂ

GGeneral notes

e If you ever need an extension, just let us know
e This class is supposed to be fun
e Sleep deprivation -> coronavirus
e This class is in Rust, but it’s not a Rust class
e You Won’t Believe This One Weird Fact
e This class is more about exposure to ideas you can take with you
e Rust is a response to the problems of C/C++. If you never use Rust again in your life, it
would still be good to know about
e The problems with C/C++
e How people are responding
e The problems with that response
e There are lots of great questions on Slack. Don’t be intimidated by fancy lingo flying
around

Today’s lecture

e Recap ownership
e Work through some examples of ownership in code
e Talk about error handling in Rust

Ownership

Ownership — in C!

/*

* % % % % % %

Get status of the virtual port (ex. tunnel, patch).

Returns '0' if 'port' is not a virtual port or has no errors.
Otherwise, stores the error string in '*errp' and returns positive errno
value. The caller is responsible for freeing '*errp' (with free()).

This function may be a null pointer if the ofproto implementation does
not support any virtual ports or their states.

*/
int (*vport get status)(const struct ofport *port, char **errp);

Open vSwitch

https://github.com/openvswitch/ovs/blob/134e6831acca48f10df3d59b8e1567c24dd925d2/ofproto/ofproto-provider.h#L1094

VA Z
* @note Any old dictionary present is discarded and replaced with a copy of the new one. The
* caller still owns val is and responsible for freeing it.
*/
int av_opt set dict val(void *obj, const char *name, const AVDictionary *val, int search flags);

https://github.com/FFmpeg/FFmpeg/blob/f1894c206eec463832eef851a5388949a68a050f/libavutil/opt.h#L695

VA ZS
* iscsi boot create target() - create boot target sysfs dir
* @boot kset: boot kset
* @index: the target id
* @data: driver specific data for target
* @show: attr show function
* @is visible: attr visibility function
* @release: release function
*
* Note: The boot sysfs 1lib will free the data passed in for the caller
* when all refs to the target kobject have been released.
*/

struct iscsi boot kobj *

iscsi boot create target(struct iscsi_boot kset *boot kset, int index,
void *data,
ssize_t (*show) (void *data, int type, char *buf),
umode_t (*is_visible) (void *data, int type),
void (*release) (void *data))

{
return iscsi boot create kobj(boot kset, &iscsi_ boot target attr group,
"target%d", index, data, show, is visible,
release);
}

EXPORT SYMBOL GPL(iscsi boot create target);

Linux kernel

https://github.com/torvalds/linux/blob/d95236782b8d6535d5a9f3fce15af8e29c195b34/drivers/scsi/iscsi_boot_sysfs.c#L389

/* Looks up a port named 'devname' in 'ofproto'. On success, returns 0 and

initializes '*port' appropriately. Otherwise, returns a positive errno
value.

* % % %

The caller owns the data in 'port' and must free it with
* ofproto port destroy() when it is no longer needed. */
int (*port query by name) (const struct ofproto *ofproto,
const char *devname, struct ofproto_port *port);

Open vSwitch

https://github.com/openvswitch/ovs/blob/134e6831acca48f10df3d59b8e1567c24dd925d2/ofproto/ofproto-provider.h#L1059

%

dvb _unregister frontend() - Unregisters a DVB frontend
@fe: pointer to &struct dvb_frontend

Stops the frontend kthread, calls dvb unregister device() and frees the
private frontend data allocated by dvb register frontend().

NOTE: This function doesn't frees the memory allocated by the demod,

by the SEC driver and by the tuner. In order to free it, an explicit call to
* dvb_frontend detach() is needed, after calling this function.

*/

int dvb_unregister frontend(struct dvb_frontend *fe);

* % %k % % % X X %

Linux kernel

https://github.com/torvalds/linux/blob/d95236782b8d6535d5a9f3fce15af8e29c195b34/include/media/dvb_frontend.h#L717

static void mapper count similar free(mapper t* pmapper, context t*) {
mapper count similar state t* pstate = pmapper->pvstate;
slls free(pstate->pgroup by field names);

// lhmslv free will free the keys: we only need to free the void-star values.

for (lhmslve t* pa = pstate->pcounts by group->phead; pa != NULL; pa = pa->pnext) ({
unsigned long long* pcount = pa->pvvalue;
free(pcount);

}
lhmslv free(pstate->pcounts by group);

https://github.com/johnkerl/miller/blob/0290ceff9de235e70a73e4ae7c6d59fd0e80fda1/c/mapping/mapper_count_similar.c#L121

Compile time vs run time

What does my Rust code actually do?

e Passing ownership: just passes a pointer

e The compiler will insert the appropriate free() call for you
e Passing references: just passes a pointer
e Explicit copy: copies memory!

Will it compile?

Live demo

“One thing that’s confusing is why sometimes | need to &var and other
times | can just use var: for example, set.contains(&var), but

set.insert(var) — why?"

Error handling

// Imagine this is code for a network server that has just received and is
// processing a packet of data.

size t len = packet.length;

void *buf = malloc(len);

memcpy (buf, packet.data, len);

// Do stuff with buf

/...

free(buf);

Two Issues

e Use of NULL in place of a real value
e Lack of proper error handling

Handling nulls

“I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At
that time, | was designing the first comprehensive type system for references in an object
oriented language (ALGOL W). My goal was to ensure that all use of references should be
absolutely safe, with checking performed automatically by the compiler. But | couldn't
resist the temptation to put in a null reference, simply because it was so easy to
implement. This has led to innumerable errors, vulnerabilities, and system crashes, which
have probably caused a billion dollars of pain and damage in the last forty years.”

- Tony Hoare

. - NVD

F.\.\ oy Go to for:

4 . ° CVSS Scores
\) a8/e

CPE Info
Advanced Search

Common Vulnerabilities and Exposures

Search CVE List Download CVE Data Feeds Request CVE IDs Update a CVE Entry
TOTAL CVE Entries: 133847

Search Results

|There are 1627 CVE entries that match your search.

Name Description

CVE-2020-9759 An issue was discovered in WeeChat before 2.7.1 (0.4.0 to 2.7 are affected). A malformed message 352 (who) can cause a NULL pointer dereference in the callback
function, resulting in a crash.

CVE-2020-9385 A NULL Pointer Dereference exists in libzint in Zint 2.7.1 because multiple + characters are mishandled in add_on in upcean.c, when called from eanx in upcean.c
during EAN barcode generation.

CVE-2020-9327 In SQLite 3.31.1, isAuxiliaryVtabOperator allows attackers to trigger a NULL pointer dereference and segmentation fault because of generated column optimizations.

CVE-2020-8859 This vulnerability allows remote attackers to create a denial-of-service condition on affected installations of ELOG Electronic Logbook 3.1.4-283534d. Authentication is
not required to exploit this vulnerability. The specific flaw exists within the processing of HTTP parameters. A crafted request can trigger the dereference of a null
pointer. An attacker can leverage this vulnerability to create a denial-of-service condition. Was ZDI-CAN-10115.

CVE-2020-8448 In OSSEC-HIDS 2.7 through 3.5.0, the server component responsible for log analysis (ossec-analysisd) is vulnerable to a denial of service (NULL pointer dereference)
via crafted messages written directly to the analysisd UNIX domain socket by a local user.

CVE-2020-8011 CA Unified Infrastructure Management (Nimsoft/UIM) 9.20 and below contains a null pointer dereference vulnerability in the robot (controller) component. A remote
attacker can crash the Controller service.

CVE-2020-8002 A NULL pointer dereference in vrend_renderer.c in virglrenderer through 0.8.1 allows attackers to cause a denial of service via commands that attempt to launch a grid
without previously providing a Compute Shader (CS).

CVE-2020-7105 async.c and dict.c in libhiredis.a in hiredis through 0.14.0 allow a NULL pointer dereference because malloc return values are unchecked.

CVE-2020-7062 In PHP versions 7.2.x below 7.2.28, 7.3.x below 7.3.15 and 7.4.x below 7.4.3, when using file upload functionality, if upload progress tracking is enabled, but
session.upload_progress.cleanup is set to 0 (disabled), and the file upload fails, the upload procedure would try to clean up data that does not exist and encounter null
pointer dereference, which would likely lead to a crash.

CVE-2020-6795 When processing a message that contains multiple S/MIME signatures, a bug in the MIME processing code caused a null pointer dereference, leading to an unexploitable
crash. This vulnerability affects Thunderbird < 68.5.

CVE-2020-6631 An issue was discovered in GPAC version 0.8.0. There is a NULL pointer dereference in the function gf_m2ts_stream_process_pmt() in media_tools/m2ts_mux.c.

NULL pointer dereferences

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=null+pointer

Why are NULLs so dangerous?

What should we do about it?

fn feeling lucky() -> Option<String> {
if get random num() > 10 {
Some (String::from("I'm feeling lucky!"))
} else {
None

}

fn feeling lucky() -> Option<String> {
if get random num() > 10 {
Some (String::from("I'm feeling lucky!"))
} else {
None

}

if feeling lucky().is none() {
println! ("Not feeling lucky :(");
}

fn feeling lucky() -> Option<String> {
if get random num() > 10 {
Some (String::from("I'm feeling lucky!"))
} else {
None

}

let message = feeling lucky().unwrap or(String::from("Not lucky :("));

fn feeling lucky() -> Option<String> {
if get random num() > 10 {
Some (String::from("I'm feeling lucky!"))
} else {
None

}

match feeling lucky() {
Some (message) => {
println! ("Got message: {}", message);

b

None => {
println! ("No message returned :-/");

b

Handling errors

Error handling in C

e If a function might encounter an error, its return type is made to be int (or
sometimes voidx).

e If the function is successful, it returns 0. Otherwise, if an error is
encountered, it returns -1. (If the function is returning a pointer, it returns a
valid pointer in the success case, or NULL if an error occurs.)

e The function that encountered the error sets the global variable errno to be
an integer indicating what went wrong. If the caller sees that the function
returned -1 or NULL, it can check errno to see what error was encountered

#define EPERM 1 /* Operation not permitted */ #define EL2HLT 51 /* Level 2 halted */

#define ENOENT 2 /* No such file or directory */ #define EBADE 52 /* Invalid exchange */

#define ESRCH 3 /* No such process */ #define EBADR 53 /* Invalid request descriptor */

#define EINTR 4 /* Interrupted system call */ #define EXFULL 54 /* Exchange full */

#define EIO 5 /* I/0 error */ #define ENOANO 55 /* No anode */

#define ENXIO 6 /* No such device or address */ #define EBADRQC 56 /* Invalid request code */

#define E2BIG 7 /* Arg list too long */ #define EBADSLT 57 /* Invalid slot */

#define ENOEXEC 8 /* Exec format error */ #define EBFONT 59 /* Bad font file format */

#define EBADF 9 /* Bad file number */ #define ENOSTR 60 /* Device not a stream */

#define ECHILD 10 /* No child processes */ #define ENODATA 61 /* No data available */

#define EAGAIN 11 /* Try again */ #define ETIME 62 /* Timer expired */

#define ENOMEM 12 /* Out of memory */ #define ENOSR 63 /* Out of streams resources */

#define EACCES 13 /* Permission denied */ #define ENONET 64 /* Machine is not on the network */

#define EFAULT 14 /* Bad address */ #define ENOPKG 65 /* Package not installed */

#define ENOTBLK 15 /* Block device required */ #define EREMOTE 66 /* Object is remote */

#define EBUSY 16 /* Device or resource busy */ #define ENOLINK 67 /* Link has been severed */

#define EEXIST 17 /* File exists */ #define EADV 68 /* Advertise error */

#define EXDEV 18 /* Cross-device link */ #define ESRMNT 69 /* Srmount error */

#define ENODEV 19 /* No such device */ #define ECOMM 70 /* Communication error on send */

#define ENOTDIR 20 /* Not a directory */ #define EPROTO 71 /* Protocol error */

#define EISDIR 21 /* Is a directory */ #define EMULTIHOP 72 /* Multihop attempted */

#define EINVAL 22 /* Invalid argument */ #define EDOTDOT 73 /* RFS specific error */

#define ENFILE 23 /* File table overflow */ #define EBADMSG 74 /* Not a data message */

#define EMFILE 24 /* Too many open files */ #define EOVERFLOW 75 /* Value too large for defined data type */
#define ENOTTY 25 /* Not a typewriter */ #define ENOTUNIQ 76 /* Name not unique on network */

#define ETXTBSY 26 /* Text file busy */ #define EBADFD 77 /* File descriptor in bad state */

#define EFBIG 27 /* File too large */ #define EREMCHG 78 /* Remote address changed */

#define ENOSPC 28 /* No space left on device */ #define ELIBACC 79 /* Can not access a needed shared library */
#define ESPIPE 29 /* Illegal seek */ #define ELIBBAD 80 /* Accessing a corrupted shared library */
#define EROFS 30 /* Read-only file system */ #define ELIBSCN 81 /* .lib section in a.out corrupted */
#define EMLINK 31 /* Too many links */ #define ELIBMAX 82 /* Attempting to link in too many shared libraries */
#define EPIPE 32 /* Broken pipe */ #define ELIBEXEC 83 /* Cannot exec a shared library directly */
#define EDOM 33 /* Math argument out of domain of func */ #define EILSEQ 84 /* Illegal byte sequence */

#define ERANGE 34 /* Math result not representable */ #define ERESTART 85 /* Interrupted system call should be restarted */
#define EDEADLK 35 /* Resource deadlock would occur */ #define ESTRPIPE 86 /* Streams pipe error */

#define ENAMETOOLONG 36 /* File name too long */ #define EUSERS 87 /* Too many users */

#define ENOLCK 37 /* No record locks available */ #define ENOTSOCK 88 /* Socket operation on non-socket */

#define ENOSYS 38 /* Function not implemented */ #define EDESTADDRREQ 89 /* Destination address required */

#define ENOTEMPTY 39 /* Directory not empty */ #define EMSGSIZE 90 /* Message too long */

#define ELOOP 40 /* Too many symbolic links encountered */ #define EPROTOTYPE 91 /* Protocol wrong type for socket */

#define EWOULDBLOCK EAGAIN /* Operation would block */ #define ENOPROTOOPT 92 /* Protocol not available */

#define ENOMSG 42 /* No message of desired type */ #define EPROTONOSUPPORT 93 /* Protocol not supported */

#define EIDRM 43 /* Identifier removed */ #define ESOCKTNOSUPPORT 94 /* Socket type not supported */

#define ECHRNG 44 /* Channel number out of range */ #define EOPNOTSUPP 95 /* Operation not supported on transport endpoint */
#define EL2NSYNC 45 /* Level 2 not synchronized */ #define EPFNOSUPPORT 96 /* Protocol family not supported */

#define EL3HLT 46 /* Level 3 halted */ #define EAFNOSUPPORT 97 /* Address family not supported by protocol */
#define EL3RST 47 /* Level 3 reset */ #define EADDRINUSE 98 /* Address already in use */

#define ELNRNG 48 /* Link number out of range */ #define EADDRNOTAVAIL 99 /* Cannot assign requested address */
#define EUNATCH 49 /* Protocol driver not attached */ e

#define ENOCSI 50 /* No CSI structure available */

ssize t siz = msgrcv(msqgid, msgp, msgsz, msgtyp, msgflg);
if (siz<0) { // msgrcv failed and has set errno

if (errno == ENOMSG)
dosomething();

else if (errno == EAGAIN)
dosomethingelse();

/// etc

else {

syslog(LOG_DAEMON|LOG_ERR, "msgrcv failure with %s\n",
strerror(errno));
exit (EXIT FAILURE);

https://stackoverflow.com/questions/46013418/how-to-check-the-value-of-errno

https://stackoverflow.com/questions/46013418/how-to-check-the-value-of-errno

CVE-2015-8812

e Ciritical Linux kernel vulnerability: by sending a malformed network packet, a
remote attacker could execute arbitrary code in the kernel

e A set of kernel networking functions were returning -1 for error, O for
success, but also other values for “warnings”

e Returned NET XMIT CN (defined to be 2) when congestion was
detected

e Code calling these functions saw nonzero return code and assumed there
was a network error

e Freed memory that was still being used for the network. Use-after-free +
double free!

The fix

-—- a/drivers/infiniband/hw/cxgb3/iwch cm.c
+++ b/drivers/infiniband/hw/cxgb3/iwch cm.c
@@ -149,7 +149,7 @@ static int iwch 12t send(struct t3cdev *tdev, struct sk _buff *skb, struct
12t_en

error = 12t send(tdev, skb, 1l2e);

if (error < 0)

kfree skb(skb);

- return error;
A return error < 0 ? error : 0;

Most languages use exceptions

What are some downsides of exceptions?

Exceptional Exceptions

e Failure modes are hard to spot: any function can throw any exception at any
time

e Hard to manage in evolving codebases

e [Especially hard when manual memory management is involved

Error handling in Rust

e If an unrecoverable error occurs, panic

if sad times() {
panic! ("Sad times!");

}
e If a recoverable error may occur, return a Result

e Result<T, E> can either be Ok(some value of type T) or
Err (some value of type E)

Usage of Result

fn poke toddler() -> Result<&'static str, &'static str> {
if get random num() > 10 {
Ok ("Hahahaha!")
} else {
Err("Waaaaahhh!")
}
}

fn main() {
match poke toddler() {
Ok (message) => println!("Toddler said: {}", message),
Err(cry) => println! ("Toddler cried: {}", cry),

unwrap() and expect|()

// Panic 1f the baby cries:

let ok message = poke toddler().unwrap():;

// Same thing, but print a more descriptive panic message:
let ok message = poke toddler().expect("Toddler cried :(");

// Read line from stdin
let mut line = String::new();
io::stdin().read line(&mut line).expect("Failed to read from stdin");

