Memory Safety in Rust

Ryan Eberhardt and Armin Namavari

April 7, 2020

Last lecture Ryan told us the bad news

about C and C++...

This lecture, I’'m going to tell you how

Rust addresses some of those issues

Disclaimer: you can still write buggy Rust

programs! Rust just makes it harder to make
certain kinds of mistakes!

Why is it so easy to screw up in C?

A Memory Exercise

e You should have completed this before class today!
o We thank Will Crichton for this exercise and for giving us permission to
use it in this class!
e Discuss your answers to the exercise in groups (we'll assign you to different
breakout rooms in Zoom)

Dangling Pointers

Vec* vec_new() {
Vec vec;
vec.data = NULL;
vec.length = 0;
vec.capacity = 0;
return &vec; // OOF

Double Frees

void main() {
Vec* vec = vec_new();
vec_push(vec, 107);

int* n = &vec->datal[0];
vec_push(vec, 110);
printf("%d\n", *n);

free(vec->data);
vec_free(vec); // YIKES

lterator Invalidation

void main() {
Vec* vec = vec_new();
vec_push(vec, 107);

int* n = &vec->datal[0];
vec_push(vec, 110);
printf("%d\n", *n); // :(

free(vec->data);
vec_free(vec);

Memory Leaks

void vec_push(Vec* vec, int n) {
if (vec->length == vec->capacity) {
int new_capacity = vec->capacity * 2;
int* new_data = (int*) malloc(nhew_capacity);
assert(new_data != NULL);

for (int 1 = 0; i < vec->length; ++i) {
new_datal[i] = vec->data[i];

}

vec->data = new_data; // O0OP: we forget to free the old data
vec->capacity = new_capacity;

}

vec->data[vec->length] = n;
++vec->length;

}

It is Incredibly Hard to Reason about Programs

e Sometimes impossible (see CS 103, 154)
e Sometimes more than impossible*

e How do we get around this?

e A: The language and the compiler!

Image Source: https://www.newyorker.com/culture/culture-desk/living-in-alan-turings-future

https://www.newyorker.com/culture/culture-desk/living-in-alan-turings-future

The Language and the Compiler

e |n order to make it easier to reason about programs, Rust needs to place some
restrictions on the programs you can write.

e This makes it difficult (sometimes impossible) to write certain programs in safe
Rust (we will talk about unsafe Rust later in the course).

e A lot of the cool guarantees we get from Rust come the checks its compiler
performs

e Rust can sometimes exceed the performance of C because of compiler
optimizations.

e |f you want to delve deeper into these topics, be sure to take CS 242 (Programming
Languages) and CS 143 (Compilers) as well as their follow-ons — these particular
topics are outside of the scope of CS110L, but let us know if you’d like us to point you
to relevant resources for learning more.

Dangling Pointers

Vec* vec_new() { . o . .
Vec vec; Wouldn't it be nice if the compiler realized that

data = NULL: vec “Iives’j within those two curly braces and
vec. datd ’ therefore its address shouldn’t be returned from

vec.length = 0; the function?

vec.capacity = 0;
return &vec; // OOF

Double Frees

void main() {
Vec* vec = vec_new();
vec_push(vec, 107);

Wouldn't it be nice if the compiler enforced
int* n = &vec->datal[0]; that once free is called on a variable, that
vec_push(vec, 110); variable can no longer be used?
printf("%d\n", *n);

free(vec->data);
vec_free(vec); // YIKES

lterator Invalidation

void main() {
Vec* vec = vec_new();

vec_push(vec, 107); Wouldn't it be nice if the compiler stopped us

from modifying the data n was pointing to (as it

int* n = &vec->datal0]; does in vec_push)?

vec_push(vec, 110);
printf("%d\n", *n); // :(

free(vec->data);
vec_free(vec);

Memory Leaks

void vec_push(Vec* vec, int n) {
if (vec->length == vec->capacity) {
int new_capacity = vec->capacity * 2;
int* new_data = (int*) malloc(nhew_capacity);

assert(new_data != NULL); Wouldn't it be nice if the compiler noticed when
o ‘ . a piece of heap data no longer had anything
for (int 1 = 0; 1 < vec->length; ++1) { pointing to it? (and so then it could safely be
new_datal[i] = vec->data[i]; freed’?)
} -

vec->data = new_data; // 0O0OP
vec->capacity = new_capacity;

}

vec->data[vec->length] = n;
++vec->length;

}

How does Rust prevent us from making

the errors we just saw?

Ownership

e The reason you ran into trouble when decomposing your code!
e From the Rust Book:

Ownership Rules

First, let's take a look at the ownership rules. Keep these rules in mind as we work through the
examples that illustrate them:

e Each value in Rust has a variable that's called its owner.
e There can only be one owner at a time.
e When the owner goes out of scope, the value will be dropped.

Controlling references to resources is a broader

idea In systems programming that isn’t unique
to Rust

Ownership in Context

fn main() {
let s: String = "im a 1il string”.to_string();
let u = s;

println!("{}", s); // println!(“{}”, u) compiles just fine!
ks

Note: you can copy/paste this code and run it in your browser @ https://play.rust-lang.org/ !

error[E0382]: borrow of moved value: s
--> src/main.rs:7:20

5 | let s: String = "im a 1il string".to_string();

| - move occurs because s~ has type “std::string::String , which does not implement the “Copy~ trait
6 | let u = s;

| - value moved here
7 | println! ("{}", s);

|

~

value borrowed here after move

https://play.rust-lang.org/
https://doc.rust-lang.org/stable/error-index.html#E0382
https://play.rust-lang.org/#

Ownership in Context

fn om_nom_nom(s: String) {
println!("I have consumed {}", s);

ks

fn main() {
let s: String = "im a 1il string".to_string(Q);
om_nom_nom(s);
println!("{}", s);

ks

error[E0382]: borrow of moved value: " s
--> src/main.rs:8:20

A

6 | let s: String = "im a 1il string".to_string();

| - move occurs because “s has type “std::string::String”, which does not implement the ~“Copy~ trait
7 om_nom_nom(s);

| - value moved here
8 | println! ("{}", s);

I

value borrowed here after move

https://doc.rust-lang.org/stable/error-index.html#E0382
https://play.rust-lang.org/#

With great power comes great responsibility

fn om_nom_nom(s: String) {
println!("I have consumed {}", s);

ks

fn main() {
let s: String = "im a 11l string".to_string(Q);
om_nom_nom(s);
println!("{}", s);

ks

Each “owner” has the responsibility to clean up after itself
When you move s into om _nom nom, om nom nom becomes the owner of s, and it will free
s when it’s no longer needed in that scope
e Technically the s parameter in om nom nom become the owner
e That means you can no longer use it in main!

An Exception to the Syntax: Copying

Given what we just saw, how can the following be valid syntax?

fn om_nom_nom(n: u32) {
println!("{} is a very nice number", n);

}
fn main() {
let n: u32 = 110;
let m = n; Output:
om_nom_nom(n); 110 is a very nice number
om_nom_nom(m); 110 is a very nice number

println!("{}", m + n); —

Wait a minute... that seems restrictive and

must make it really hard to write code!

Thought experiment

e Say you have a group of lawyers that are reviewing and signing a contract over
Google Docs

Is this realistic? Nope :) But just pretend!

e What are some ground rules we’d need to set in order to avoid chaos?

If someone modifies the contract before everyone else reviews/signs it,
that’s fine

But if someone modifies the contract while others are reviewing it, people
might miss changes and think they’re signing a contract that says
something else

We should allow a single person to modify, or everyone to read, but not both

Borrowing Intuition

| should be able to have as many “const” pointers to a piece of data that |
like

However if | have a “non-const” pointer to a piece of data at the same time,
this could invalidate what the other const pointers are viewing (e.g. they can
become dangling pointers...)

If | have at most one “non-const” pointer at any given time, this should be
OK.

Borrowing

e \We can have multiple shared (immutable) references at once (with no
mutable references) to a value.

e \We can have only one mutable reference at once (no shared references to it)

e This is a paradigm that pops up a lot in systems programming, especially
when you have “readers” and “writers.” In fact, you’ll see it in CS110 once
you start talking about threading and concurrency.

Lifetimes

e The lifetime of a value starts when it’s created and ends the last time it’s
used

e Rust doesn’t let you have a reference to a value that lasts longer than the
value’s lifetime

e Rust computes lifetimes at compile time using static analysis (this is often an

over-approximation)
e Rust calls the special “drop” function on a value once its lifetime ends (this is

essentially a destructor).

Borrowing Example

fn change_it_up(s: &mut String) {
*s = "goodbye".to_string(Q);

fn make_it_plural(word: &mut String) {
word.push('s");

fn let_me_see(s: &String) {
println!("{}", s);

}
e mainG © -] pub fn push(&mut self, ch: char)
let mut s = "hello".to_string(Q);
change_it_up(&mut s); Appends the given char to the end of this String.

let_me_see(&s);

make_it_plural(&mut s);

let_me_see(&s);

// let's make it even more plural
s.push(’s"); // does this seem strange?
let_me_see(&s);

Borrowing Example: Vectors

fn main() {
let v = vec![1, 2, 3]; .
for i in v.iter_mut({ pub fn iter_mut(&mut self) -> IterMut<T>
*1 = 55
; Returns an iterator that allows modifying each value.

for i in v.iter(Q) {
println!("{3}", 1);
ks
ks

error[E0596]: cannot borrow “v as mutable, as it is not declared as mutable
--> src/main.rs:3:14

2 | let v = vec![1, 2, 31;
| - help: consider changing this to be mutable: “mut v~
3| for i in v.iter mut()({
|

~ cannot borrow as mutable

error: aborting due to previous error

https://doc.rust-lang.org/stable/error-index.html#E0596
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6a15a9aa02c86fc1077d81078afd44a5#

Reminder: The ownership and borrowing

rules are enforced at compile time!

This is a big deal — you only compile the program once, but you can run the
executable as many times as you like afterward
This is essentially making a fixed cost investment in our preprocessing.
It’s generally desirable to shift checks from runtime to compile time.
e Generally, there is a tension between security and performance. Rust
tries to give you both.
e Just don’t screw up your compiler :(
e Many security vulnerabilities pop up from making fancy optimizations

A Reminder: The First Assignment

e Again we just want you to get familiar with the basic syntax so we can talk
about fancier concepts next week.

e You’'ll definitely see ownership and borrowing in action — hopefully seeing it
in this context and wrestling with the compiler/borrow checker will solidify
your understanding (there’s only so much you can get from the lecture by
itself)

e Please ask questions on Slack and help each other out!

Additional Resources/Readings

Ownership and borrowing for visual learners!

A great resource on iterating over vectors in Rust

A Medium article about ownership, borrowing, and lifetimes

CS242 lecture notes — shout out to Will Crichton to providing advice on
explaining some of these concepts!

The Rust book

e Check out sections 4.1 and 4.2 (deeper explanation of lifetimes)

https://rufflewind.com/2017-02-15/rust-move-copy-borrow
http://xion.io/post/code/rust-for-loop.html
https://medium.com/@bugaevc/understanding-rust-ownership-borrowing-lifetimes-ff9ee9f79a9c
http://cs242.stanford.edu/f19/lectures/06-2-memory-safety
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/1.4.0/nomicon/ownership.html

