
Memory Safety in Rust

Ryan Eberhardt and Armin Namavari

April 7, 2020

Last lecture Ryan told us the bad news
about C and C++…

This lecture, I’m going to tell you how
Rust addresses some of those issues

Disclaimer: you can still write buggy Rust
programs! Rust just makes it harder to make

certain kinds of mistakes!

Why is it so easy to screw up in C?

A Memory Exercise

! You should have completed this before class today!

○ We thank Will Crichton for this exercise and for giving us permission to

use it in this class!

! Discuss your answers to the exercise in groups (we'll assign you to different

breakout rooms in Zoom)

Dangling Pointers

Vec* vec_new() {
 Vec vec;
 vec.data = NULL;
 vec.length = 0;
 vec.capacity = 0;
 return &vec; // OOF
}

Double Frees

void main() {
 Vec* vec = vec_new();
 vec_push(vec, 107);

 int* n = &vec->data[0];
 vec_push(vec, 110);
 printf("%d\n", *n);

 free(vec->data);
 vec_free(vec); // YIKES
}

Iterator Invalidation

void main() {
 Vec* vec = vec_new();
 vec_push(vec, 107);

 int* n = &vec->data[0];
 vec_push(vec, 110);
 printf("%d\n", *n); // :(

 free(vec->data);
 vec_free(vec);
}

Memory Leaks

void vec_push(Vec* vec, int n) {
 if (vec->length == vec->capacity) {
 int new_capacity = vec->capacity * 2;
 int* new_data = (int*) malloc(new_capacity);
 assert(new_data != NULL);

 for (int i = 0; i < vec->length; ++i) {
 new_data[i] = vec->data[i];
 }

 vec->data = new_data; // OOP: we forget to free the old data
 vec->capacity = new_capacity;
 }

 vec->data[vec->length] = n;
 ++vec->length;
}

It is Incredibly Hard to Reason about Programs

! Sometimes impossible (see CS 103, 154)

! Sometimes more than impossible*

! How do we get around this?

! A: The language and the compiler!

Image Source: https://www.newyorker.com/culture/culture-desk/living-in-alan-turings-future

https://www.newyorker.com/culture/culture-desk/living-in-alan-turings-future

The Language and the Compiler

! In order to make it easier to reason about programs, Rust needs to place some
restrictions on the programs you can write.

! This makes it difficult (sometimes impossible) to write certain programs in safe

Rust (we will talk about unsafe Rust later in the course).

! A lot of the cool guarantees we get from Rust come the checks its compiler

performs
! Rust can sometimes exceed the performance of C because of compiler

optimizations.
! If you want to delve deeper into these topics, be sure to take CS 242 (Programming

Languages) and CS 143 (Compilers) as well as their follow-ons — these particular
topics are outside of the scope of CS110L, but let us know if you’d like us to point you
to relevant resources for learning more.

Dangling Pointers

Vec* vec_new() {
 Vec vec;
 vec.data = NULL;
 vec.length = 0;
 vec.capacity = 0;
 return &vec; // OOF
}

Wouldn’t it be nice if the compiler realized that
vec “lives” within those two curly braces and
therefore its address shouldn’t be returned from
the function?

Double Frees

void main() {
 Vec* vec = vec_new();
 vec_push(vec, 107);

 int* n = &vec->data[0];
 vec_push(vec, 110);
 printf("%d\n", *n);

 free(vec->data);
 vec_free(vec); // YIKES
}

Wouldn’t it be nice if the compiler enforced
that once free is called on a variable, that
variable can no longer be used?

Iterator Invalidation

void main() {
 Vec* vec = vec_new();
 vec_push(vec, 107);

 int* n = &vec->data[0];
 vec_push(vec, 110);
 printf("%d\n", *n); // :(

 free(vec->data);
 vec_free(vec);
}

Wouldn’t it be nice if the compiler stopped us
from modifying the data n was pointing to (as it
does in vec_push)?

Memory Leaks

void vec_push(Vec* vec, int n) {
 if (vec->length == vec->capacity) {
 int new_capacity = vec->capacity * 2;
 int* new_data = (int*) malloc(new_capacity);
 assert(new_data != NULL);

 for (int i = 0; i < vec->length; ++i) {
 new_data[i] = vec->data[i];
 }

 vec->data = new_data; // OOP
 vec->capacity = new_capacity;
 }

 vec->data[vec->length] = n;
 ++vec->length;
}

Wouldn’t it be nice if the compiler noticed when
a piece of heap data no longer had anything
pointing to it? (and so then it could safely be
freed?)

Pause

How does Rust prevent us from making
the errors we just saw?

Ownership

! The reason you ran into trouble when decomposing your code!

! From the Rust Book:

Controlling references to resources is a broader
idea in systems programming that isn’t unique

to Rust

Ownership in Context

fn main() {
 let s: String = "im a lil string”.to_string();
 let u = s;
 println!("{}", s); // println!(“{}”, u) compiles just fine!
}

Note: you can copy/paste this code and run it in your browser @ https://play.rust-lang.org/ !

error[E0382]: borrow of moved value: `s`
 --> src/main.rs:7:20
 |
5 | let s: String = "im a lil string".to_string();
 | - move occurs because `s` has type `std::string::String`, which does not implement the `Copy` trait
6 | let u = s;
 | - value moved here
7 | println!("{}", s);
 | ^ value borrowed here after move

https://play.rust-lang.org/
https://doc.rust-lang.org/stable/error-index.html#E0382
https://play.rust-lang.org/#

Ownership in Context

fn om_nom_nom(s: String) {
 println!("I have consumed {}", s);
}

fn main() {
 let s: String = "im a lil string".to_string();
 om_nom_nom(s);
 println!("{}", s);
}

error[E0382]: borrow of moved value: `s`
 --> src/main.rs:8:20
 |
6 | let s: String = "im a lil string".to_string();
 | - move occurs because `s` has type `std::string::String`, which does not implement the `Copy` trait
7 | om_nom_nom(s);
 | - value moved here
8 | println!("{}", s);
 | ^ value borrowed here after move

https://doc.rust-lang.org/stable/error-index.html#E0382
https://play.rust-lang.org/#

With great power comes great responsibility

fn om_nom_nom(s: String) {
 println!("I have consumed {}", s);
}

fn main() {
 let s: String = "im a lil string".to_string();
 om_nom_nom(s);
 println!("{}", s);
}

! Each “owner” has the responsibility to clean up after itself

! When you move s into om_nom_nom, om_nom_nom becomes the owner of s, and it will free

s when it’s no longer needed in that scope

! Technically the s parameter in om_nom_nom become the owner

! That means you can no longer use it in main!

An Exception to the Syntax: Copying

Given what we just saw, how can the following be valid syntax?

fn om_nom_nom(n: u32) {
 println!("{} is a very nice number", n);
}

fn main() {
 let n: u32 = 110;
 let m = n;
 om_nom_nom(n);
 om_nom_nom(m);
 println!("{}", m + n);
}

Output:
110 is a very nice number
110 is a very nice number
220

Wait a minute… that seems restrictive and
must make it really hard to write code!

Thought experiment

! Say you have a group of lawyers that are reviewing and signing a contract over
Google Docs

! Is this realistic? Nope :) But just pretend!

! What are some ground rules we’d need to set in order to avoid chaos?

! If someone modifies the contract before everyone else reviews/signs it,

that’s fine

! But if someone modifies the contract while others are reviewing it, people

might miss changes and think they’re signing a contract that says
something else

! We should allow a single person to modify, or everyone to read, but not both

Borrowing Intuition

! I should be able to have as many “const” pointers to a piece of data that I
like

! However if I have a “non-const” pointer to a piece of data at the same time,
this could invalidate what the other const pointers are viewing (e.g. they can
become dangling pointers…)

! If I have at most one “non-const” pointer at any given time, this should be
OK.

Borrowing

! We can have multiple shared (immutable) references at once (with no
mutable references) to a value.

! We can have only one mutable reference at once (no shared references to it)

! This is a paradigm that pops up a lot in systems programming, especially

when you have “readers” and “writers.” In fact, you’ll see it in CS110 once
you start talking about threading and concurrency.

Lifetimes

! The lifetime of a value starts when it’s created and ends the last time it’s
used

! Rust doesn’t let you have a reference to a value that lasts longer than the
value’s lifetime

! Rust computes lifetimes at compile time using static analysis (this is often an
over-approximation)

! Rust calls the special “drop” function on a value once its lifetime ends (this is
essentially a destructor).

Borrowing Example

fn change_it_up(s: &mut String) {
 *s = "goodbye".to_string();
}

fn make_it_plural(word: &mut String) {
 word.push('s');
}

fn let_me_see(s: &String) {
 println!("{}", s);
}

fn main() {
 let mut s = "hello".to_string();
 change_it_up(&mut s);
 let_me_see(&s);
 make_it_plural(&mut s);
 let_me_see(&s);
 // let's make it even more plural
 s.push(’s'); // does this seem strange?
 let_me_see(&s);
}

Borrowing Example: Vectors

fn main() {
 let v = vec![1, 2, 3];
 for i in v.iter_mut(){
 *i = 5;
 }
 for i in v.iter() {
 println!("{}", i);
 }
}

error[E0596]: cannot borrow `v` as mutable, as it is not declared as mutable
 --> src/main.rs:3:14
 |
2 | let v = vec![1, 2, 3];
 | - help: consider changing this to be mutable: `mut v`
3 | for i in v.iter_mut(){
 | ^ cannot borrow as mutable

error: aborting due to previous error

https://doc.rust-lang.org/stable/error-index.html#E0596
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6a15a9aa02c86fc1077d81078afd44a5#

Reminder: The ownership and borrowing
rules are enforced at compile time!

So what?

! This is a big deal — you only compile the program once, but you can run the
executable as many times as you like afterward

! This is essentially making a fixed cost investment in our preprocessing.

! It’s generally desirable to shift checks from runtime to compile time.

! Generally, there is a tension between security and performance. Rust
tries to give you both.

! Just don’t screw up your compiler :(

! Many security vulnerabilities pop up from making fancy optimizations

A Reminder: The First Assignment

! Again we just want you to get familiar with the basic syntax so we can talk
about fancier concepts next week.

! You’ll definitely see ownership and borrowing in action — hopefully seeing it
in this context and wrestling with the compiler/borrow checker will solidify
your understanding (there’s only so much you can get from the lecture by
itself)

! Please ask questions on Slack and help each other out!

Additional Resources/Readings

! Ownership and borrowing for visual learners!

! A great resource on iterating over vectors in Rust

! A Medium article about ownership, borrowing, and lifetimes

! CS242 lecture notes — shout out to Will Crichton to providing advice on

explaining some of these concepts!

! The Rust book

! Check out sections 4.1 and 4.2 (deeper explanation of lifetimes)

https://rufflewind.com/2017-02-15/rust-move-copy-borrow
http://xion.io/post/code/rust-for-loop.html
https://medium.com/@bugaevc/understanding-rust-ownership-borrowing-lifetimes-ff9ee9f79a9c
http://cs242.stanford.edu/f19/lectures/06-2-memory-safety
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/1.4.0/nomicon/ownership.html

