Welcome to CS 110L ¥

Ryan Eberhardt and Armin Namavari

April 7, 2020

Who are we?

Armin Namavari

Coterm (class of '19 undergrad)
Interested in security/building secure systems, applied cryptography, theory
I've used Rust in the context of research on Tock, an embedded OS
During shelter-in-place |'ve been...
o Dbeen learning how to longboard
o finger-knitting a blanket
o trying to cook new things
e | like climbing and playing ultimate!

Ryan Eberhardt

e (Coterm focused on systems and security
e | like growing things

Ryan Eberhardt

Coterm focused on systems and security

| like growing things

Pretty into music, especially funk, jazz, and fusion

| love doing pottery -~ o

Complete Rust impostor - =3

But | do know CS 110 pretty well CS 110: Principles of Computer Systems

v EVALUATIONS
2017/2018, Summer:
Eberhardt, Ryan (38 respondents)

1 2 3 - 5

20172018 Snrina-

HUGE thanks to Will Crichton for course material, advice, and feedback!

Who are you?

Who are you?

Fun and quirky community of 33 registered (as of Monday) + a few auditors!

Who are you?

What time zone are you in?

32 responses

@ Pacific
@ Mountain
> Central
@ Eastern
® GMT+8

@ Beijing

Who are you?

Why are you taking this class?

| want to learn Rust!

Enhance what | will learn in CS§110

I'm growing to love systems, and | hate errors. CS 110L says it'll help me with this
| am developing more interest in maintaining secure code, particularly in low-level
systems, so this course seems like it'd be great for me.

e The projects look super cool! Also, in general, | think systems is really difficult for
me, but despite this, | genuinely thought the content of 107 was really interesting
and thus | think it'd be great for me to be able to explore these topics more deeply.

Who are you?

Have you heard anything about Rust before?

e Most people: “Nope.”
e Note: If you have taken CS 242 (two people), you will likely have seen most of the
content from the first half of the class. (Feel free to stay for the second half!)

Who are you?

Tell us something about you.

32 responses

I made fried chicken sandwiches for the first time yesterday and they were delicious.
| may or may not have mapped parts of the steam tunnels

I'm on Stanford Jump Rope! :D

I can lick my nose

| love motorycles

I'm an archer!

| enjoy climbing redwood trees

| play squash (which is a sport as well as a vegetable)

Obsessed with indie music! | want to be a musician some day.

Say hi on #social!
(Let us know if you need a Slack invite.)

Why Rust?

Why Rust?

Why not C/C++7?

Why not GC’ed languages (Java, Python, Go, etc.)

Why not C/C++?

(topic of Thursday’s lecture)

“Convert a String to Uppercase in C,” taken VERBATIM from

#include <stdio.h>
#include <string.h>
int main() {
char s[100];
int i;
printf("\nEnter a string : ");
gets(s);
for (i = 0; s[i]!="\0"; i++) {
if(s[i] >= 'a' && s[i] <= '
s[i] = s[i] -32;

z') {

}
}

printf("\nString in Upper Case = %s", s);
return 0;

https://www.tutorialspoint.com/convert-a-string-to-uppercase-in-c

Anatomy of a Stack Frame

High addresses
; push call arguments, in reverse ...previous stuff ...
push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer
...do stuff...
mov esp, ebp
pop ebp ; restore old call frame
ret ; return)
Local variables
add esp, 12 ; remove call arguments from frame
Low addresses

From https://en.wikipedia.org/wiki/X86_calling_conventions#cdecl

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer

...do stuff...

Low addresses

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer
...do stuff...

Low addresses

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee:
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame

...do stuff...

Low addresses

Anatomy of a Stack Frame

High addresses

; push call arguments, in reverse ...previous stuff ...
push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’

callee:

push ebp ; save old call frame

mov ebp, esp ; initialize new call frame

...do stuff...

mov esp, ebp

pop ebp ; restore old call frame

ret ; return

g

Low addresses

Morris Worm (circa 1988)

int main(int argc, char *argv[]) {
char line[512];
struct sockaddr in sinj;
int i, p[2], pid, status;
i = sizeof (sin);

if (getpeermage(0, &sin, &i) < 0) fatal(argv[0], "getpeername");
if== NULL) exit(1);
edraT *sp = line;

regi

if ((pid = fork()) == 0) {
close(p[0]);
if (p[l] != 1) {
dup2(p[l], 1);
close(p[1l]);
}
execv("/usr/ucb/finger", av);
_exit(1l);
}

“Convert a String to Uppercase in C,” circa 2020

#include <stdio.h>
#include <string.h>
int main() {

char s[100];

int i;
0 Li-R “\nEnter a string : ");
QL s[i1!="\0"; i++) {
if(s[i] >= 'a' && s[i] <= "z'") {
s[i] = s[i] -32;
}

}

printf("\nString in Upper Case = %s", s);
return 0;

Okay, well, I'm smarter than that.

Professional engineers don’t make such silly mistakes, right?

Comprehensive Experimental Analyses of Automotive Attack Surfaces

Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, and Stefan Savage
University of California, San Diego

Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno
University of Washington

Abstract
Modern automobiles are pervasively computerized, and
hence potentially vulnerable to attack. However, while
previous research has shown that the internal networks
within some modern cars are insecure, the associated
threat model —requiring prior physical access— has

This situation suggests a significant gap in knowledge,
and one with considerable practical import. To what ex-
tent are external attacks possible, to what extent are they
practical, and what vectors represent the greatest risks?
Is the etiology of such vulnerabilities the same as for
desktop software and can we think of defense in the same

“Like many modern cars, our car’s cellular capabilities facilitate a variety of safety and
convenience features (e.q. the car can automatically call for help if it detects a crash).
However, long-range communication channels also offer an obvious target for potential
attackers...”

The car has a 3G modem, but 3G service isn’t available everywhere (this was especially
true in 2011, when the paper was written). As such, the car also has an analog audio
modem with an associated telephone number! “To synthesize a digital channel in this

environment, the manufacturer uses Airbiquity’s agLink software modem to covert
between analog waveforms and digital bits.”

“As mentioned earlier, the aqLink code explicitly supports packet sizes up to 1024 bytes.
However, the custom code that glues aqLink to the Command program assumes that
packets will never exceed 100 bytes or so (presumably since well-formatted command
messages are always smaller)”

“We also found that the entire attack can be implemented in a completely blind
fashion — without any capacity to listen to the car’s responses. Demonstrating this, we
encoded an audio file with the modulated post-authentication exploit payload and
loaded that file onto an iPod. By manually dialing our car on an office phone and then
playing this “song” into the phone’s microphone, we are able to achieve the same
results and compromise the car.”

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

Umm... Well | just won’t work for a car company?

SNETSECLIRITY News Features Expert analvsis Reviews Events Whitepapers Industrv news Newsletters

The A Reaister’

THEVERGE TECH ~ SCIENCE -~ ENTERTAINMENT - MORE

B HELPNETSECURITY News Features Expertanalysis Reviews Events Whitepapers Industry news Newsletters

= threat Ost Cloud Security Malware Vulnerabilities Waterfall Security Spotlight Podcasts
i: i Zoom Removes Data-Mining LinkedIn Feature Spearphishing Campaign Exploits COVID-19 To Spread |
H‘ Z
o r
re - - -
. - Google Squashes High-Severity Flaws in
n¢ A Practical Guide to Zero-
; : Chrome Browser Securlty
cc d
* 7 Tips for Maximizing You
o
ul
M Mean Time to Hardening:
ol Gen Security Metric
pr

Combining Al and Playbo
Predict Cyberattacks

The Case for Cyber-Risk

Write a comment

B CVE - Search Results X

© & https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow

N,

Common Vulnerabilities and Exposures

NVD

Go to for:

CVSS Scores
CPE Info
Advanced Search

Search CVE List Download CVE Data Feeds Request CVE IDs

TOTAL CVE Entries: 133423

Update a CVE Entry

Search Results

’There are 10635 CVE entries that match your search.

Name
CVE-2020-9760

CVE-2020-9552
CVE-2020-9535
CVE-2020-9534
CVE-2020-9366

CVE-2020-9067

CVE-2020-8962

CVE-2020-8955

CVE-2020-8874

CVE-2020-8608
CVE-2020-8597

Description

An issue was discovered in WeeChat before 2.7.1 (0.3.4 to 2.7 are affected). When a new IRC message 005 is received with longer nick prefixes, a buffer overflow and
possibly a crash can happen when a new mode is set for a nick.

Adobe Bridge versions 10.0 have a heap-based buffer overflow vulnerability. Successful exploitation could lead to arbitrary code execution.
fmwlan.c on D-Link DIR-615]x10 devices has a stack-based buffer overflow via the formWlanSetup_Wizard webpage parameter when f_radius_ip1 is malformed.
fmwlan.c on D-Link DIR-615]x10 devices has a stack-based buffer overflow via the formWIlanSetup webpage parameter when f_radius_ip1 is malformed.

A buffer overflow was found in the way GNU Screen before 4.8.0 treated the special escape OSQ 49. Specially crafted output, or a special program, could corrupt
memory and crash Screen or possibly have unspecified other impact.

There is a buffer overflow vulnerability in some Huawei products. The vulnerability can be exploited by an attacker to perform remote code execution on the affected
products when the affected product functions as an optical line terminal (OLT). Affected product versions include:SmartAX MA5600T versions V800OR013C10,
V800R015C00, V80OOR015C10, VBOOR017C00, VBOOR017C10, VBOOR018C00, VBOOR018C10; SmartAX MA5800 versions V100R017C00, V100R017C10, V100R018C00,
V100R018C10, V100R019C10; SmartAX EA5800 versions V100R018C00, V100R018C10, V100R019C10.

A stack-based buffer overflow was found on the D-Link DIR-842 REVC with firmware v3.13B09 HOTFIX due to the use of strcpy for LOGINPASSWORD when handling a
POST request to the /MTFWU endpoint.

irc_mode_channel_update in plugins/irc/irc-mode.c in WeeChat through 2.7 allows remote attackers to cause a denial of service (buffer overflow and application crash)
or possibly have unspecified other impact via a malformed IRC message 324 (channel mode).

This vulnerability allows local attackers to escalate privileges on affected installations of Parallels Desktop 15.1.2-47123. An attacker must first obtain the ability to
execute high-privileged code on the target guest system in order to exploit this vulnerability. The specific flaw exists within the xHCI component. The issue results from
the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to
escalate privileges and execute code in the context of the hypervisor. Was ZDI-CAN-10032.

In libslirp 4.1.0, as used in QEMU 4.2.0, tcp_subr.c misuses snprintf return values, leading to a buffer overflow in later code.

eap.c in pppd in ppp 2.4.2 through 2.4.8 has an rhostname buffer overflow in the eap_request and eap_response functions.

void ares_create_query(const char *name, int dnsclass)

unsigned char *q;
const char *p;

* Compute the length of the encoded name so we can check buflen. *
int len = 0;
for (p = name; *p; p++)

{

if ()p == "\\' && *(p + 1) != 0)

ptt;

len++;
}
#* If there are n periods in the name, there are n + 1 lab , and
* thus n + 1 length fie ty or with a
* i So ad or ends with a period.
*

if (*name && *(p - 1) != ".") | fa]se if name ends with \.
len++;

#* +1 for dnsclass below #*
q = malloc(len + 1);

while (*name)

{
q++ = / ... label length, calculation omitted for brevity *
for (p = name; *p && *p != '.'; p++)
{
if (*p == "\\' & *(p + 1) != 0)
pt+;
*qtt+ = *p;
}
* Go to the next label and repeat, unless we hit the end. *
if (1#p)
break;
name = p + 1;
}

|*q = dnsclass & Oxff;| overflows one byte

¥

One-byte overflow in Chrome OS:
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

Spot the overflow

char buffer[128];

int bytesToCopy = packet.length;
if (bytesToCopy < 128) {

strncpy(buffer, packet.data, bytesToCopy);
}

Spot the overflow

char buffer[128];

int bytesToCopy = packet.length;

if (bytesToCopy < 128) { ¢/ Proper bounds check
strncpy(buffer, packet.data, bytesToCopy);

}

/ Use of strncpy (avoiding unsafe strcpy)

Spot the overflow

Signed har buffer[128];
pytesToCopy = packet.length;

1f (bytesToCopy < 128) {

strncpy(buffer, packet.data,(bytesToCopy))

Cast to size_t (unsigned)

}

More reasons to come on Thursday

Aside: doesn’t Valgrind tell you about these things?

==1234== Memcheck, a memory error detector

==1234== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==1234== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==1234== Command: ./poop

==1234==

==1234== Invalid write of size 8

==1234== at 0x400BCF: poop (main.c:24)

==1234== by 0x400CCC: plop (main.c:100)

==1234== by 0x400DFF: main (main.c:200)

==1234== Address 0x51f25c0 is 16 bytes inside a block of size 20 alloc'd

==1234== at 0x4C2B6CD: malloc (in /usr/lib/valgrind/vgpreload memcheck-amd64-linux.so)
==1234== by 0x400BBB: poop (main.c:20)

==1234== by 0x400CCC: plop (main.c:100)

==1234== by 0x400DFF: main (main.c:200)

Why not use GC’ed languages?

Dear X,
| am looking forward to meeting you, and to a great year in Kimball!

Please consider an idea that | think will make life just a tiny bit better for everyone in the dorm this
year.

Last year, a number of us noticed that some people in the dorm were pretty messy, their rooms
were a mess, and trash piled up.

It turns out that not only are these trash piles unpleasant, but they can be a hazard, potentially even
to others.

According to The Cardinal Safety Letter (2012) :

“We have seen some fairly impressive mountains of trash overflowing the little dorm room trash
cans. This is not sanitary in the least!”

We also know that exhortations to clean up too often fall on deaf ears.

... more pleas follow ...

The good news is that we have a completely painless solution that will be totally inclusive,
promote a clean dorm, reduce stress, and engages with Stanford’s goal of sustainability.

It’s all set to go, just pending your go-ahead.

| will collect the trash from each room in Kimball every week* to help everyone maintain a
clean living environment. For less than $.50 per student per weekday, we’ll take out everyone’s
trash for all 10 weeks of the quarter.* By using dorm funds, it doesn’t really cost anyone
anything, yet we all benefit.

It’s a great use of dorm funds, because it’ll benefit every member of the dorm equally, which is
exactly what dorm funds are for.

It’s free for the residents: all we have to do is tie our bags of trash, place them outside our
doors by midnight on Sunday, and I'll pick them up on Monday - providing a clean start to the
week. Students will be saved the hassle and unpleasantness of completing this tiresome
chore, and none of us will have to put up with the messy consequences of piles of trash in
dorm rooms.

For just $25 per student, the entire dorm’s trash is taken care of for the entire quarter.

A twist

e |Instead of putting your trash outside, leave it inside your room
e The GC will come knocking when it’s time to clean up

Downsides of garbage collection

e Expensive
e No matter what type of garbage collection is used, there will always be nontrivial
memory overhead
e Disruptive
e Drop what you’re doing — it’s time for GC!
e Non-deterministic
e When will the next GC pause be? Who knows! Depends on how much memory
is being used
e Precludes manual optimization
e |n some situations, you may want to structure your data in memory in a specific
way in order to achieve high cache performance
e GC can’t know how you will use memory, so it optimizes for the average use
case

\J |

DISCORD ENGINEERING CHANGELOG ARCHIVE

Why Discord is switching from Go to
Rust

@ Jesse Howarth
Feb 4 - 10 min read = m n 0

System CPU & % Average Response Time (ms)
50
30
40
20
10
10
0 T T T T T T T 0% T T T
1:00 10:05 10:10 10:15 10:20 10:25 10: 1:00 10:05 10:10 10:15
Response Time (95th) (ms) & # Max @mention (s)
400
6
300
4
200
2
100 H
0 T T T T T T T 0+ T T T
1:00 10:05 10:10 10:15 10:20 10:25 10: 1:00 10:05 10:10 10:15

Note latency spikes every 2 minutes

- - -
10:20 10:25 10:

S
. . .
10:20 10:25 10:

LinkedIn Engineering:

“In our production environments, we have seen unexplainable large

STW pauses (> 5 seconds) in our mission-critical Java applications.”

https://engineering.linkedin.com/blog/2016/02/eliminating-large-jvm-gc-pauses-caused-by-background-io-traffic

https://engineering.linkedin.com/blog/2016/02/eliminating-large-jvm-gc-pauses-caused-by-background-io-traffic

Latency matters

User interfaces
Games

Self-driving cars
Payment processing
High frequency trading

Garbage collectors aren’t all about safety

e Later in the quarter, we’ll learn about race conditions
e Garbage collection does not preclude race conditions! Memory safety issues
persist even in garbage-collected environments

Design goals of Rust

Rust Programming Language X

O &t www.rust-lang.org LIND o Wt 2w &
® Install Learn Playground Tools Governance Community Blog English (en-US) B
Rust GET
STARTED

A language empowering everyone

;) . Version 1.42.0
to build reliable and efficient software.

Why Rust?

Performance Reliability Productivity

Rust is blazingly fast and memory-efficient: Rust’s rich type system and ownership Rust has great documentation, a friendly
with no runtime or garbage collector, it can model guarantee memory-safety and compiler with useful error messages, and
power performance-critical services, run thread-safety — enabling you to eliminate top-notch tooling — an integrated package
on embedded devices, and easily integrate many classes of bugs at compile-time. manager and build tool, smart multi-editor
with other languages. support with auto-completion and type

About CS 110L ¥

Course outline

e Corequisite: CS 110
e Pass/fall

e You will get out what you put in
e First 3-4 weeks: Safety in a CS 107 context
e Rest of course: Safety in a CS 110 context
e Components:

e Lecture

e Weekly exercises (20%)

e Two projects (60%)

e Participation (20%)

Projects

e Project 1: Mini GDB

e Project 2: High-performance web server

e Functionality grading only

e The Rust compiler will be your interactive style grader!

e These projects are intended to give you additional experience in building real
systems, while having to think about some of the safety issues we’re
discussing

e Have a different idea? Let us know!

Exercises

e Each week, we’ll give you some small programming problems to reinforce
the week’s lecture material

e Expected time: 1-3 hours

e In addition, you’ll be asked to complete an anonymous survey about how the

class is going and how we can improve

Week 1 Exercise

e The first week, we'll be mainly covering conceptual material about Rust in
lecture

e But that's no excuse for you to not start playing around with the language and
getting used to its syntax!
The first exercise will be to implement a simple hangman command line game.

e Our goal is to expose you to some of Rust's syntax without you having to deal
with some of its quirks (which we'll discuss in more detail next week).

e You'll probably have to do some of your own searching through docs/stack
overflow/etc, but we're available on Slack to support you! (as are your fellow
classmates)

Work for Thursday

Before class, spend 10 minutes trying to spot as many bugs as you can find in
this code snippet:
https://web.stanford.edu/class/cs110l/lecture-notes/lecture-02/

(From the course website, click “Lecture notes” under Lecture 2)

https://web.stanford.edu/class/cs110l/lecture-notes/lecture-02/

