
Welcome to CS 110L 👋

Ryan Eberhardt and Armin Namavari

April 7, 2020

Who are we?

Armin Namavari

! Coterm (class of '19 undergrad)

! Interested in security/building secure systems, applied cryptography, theory

! I've used Rust in the context of research on Tock, an embedded OS

! During shelter-in-place I've been...

○ been learning how to longboard

○ finger-knitting a blanket

○ trying to cook new things

! I like climbing and playing ultimate!

Ryan Eberhardt

! Coterm focused on systems and security

! I like growing things

Ryan Eberhardt

! Coterm focused on systems and security

! I like growing things

! Pretty into music, especially funk, jazz, and fusion

! I love doing pottery

! Complete Rust impostor

! But I do know CS 110 pretty well 

HUGE thanks to Will Crichton for course material, advice, and feedback!

Who are you?

Who are you?

Fun and quirky community of 33 registered (as of Monday) + a few auditors!

Who are you?

Who are you?

Why are you taking this class?

! I want to learn Rust!
! Enhance what I will learn in CS110
! I'm growing to love systems, and I hate errors. CS 110L says it'll help me with this
! I am developing more interest in maintaining secure code, particularly in low-level

systems, so this course seems like it'd be great for me.
! The projects look super cool! Also, in general, I think systems is really difficult for

me, but despite this, I genuinely thought the content of 107 was really interesting
and thus I think it'd be great for me to be able to explore these topics more deeply.

Who are you?

Have you heard anything about Rust before?

! Most people: “Nope.”
! Note: If you have taken CS 242 (two people), you will likely have seen most of the

content from the first half of the class. (Feel free to stay for the second half!)

Who are you?

Say hi on #social!
(Let us know if you need a Slack invite.)

Why Rust?

Why Rust?

Why not C/C++?

Why not GC’ed languages (Java, Python, Go, etc.)

Why not C/C++?

(topic of Thursday’s lecture)

“Convert a String to Uppercase in C,” taken VERBATIM from Tutorials Point

#include <stdio.h>
#include <string.h>
int main() {
 char s[100];
 int i;
 printf("\nEnter a string : ");
 gets(s);
 for (i = 0; s[i]!='\0'; i++) {
 if(s[i] >= 'a' && s[i] <= 'z') {
 s[i] = s[i] -32;
 }
 }
 printf("\nString in Upper Case = %s", s);
 return 0;
}

https://www.tutorialspoint.com/convert-a-string-to-uppercase-in-c

Anatomy of a Stack Frame

… previous stuff …

Function parameters

Return address

Saved base pointer

Local variables

High addresses

Low addresses

; push call arguments, in reverse
push 3
push 2
push 1
call callee ; call subroutine ‘callee'

 callee:
 push ebp ; save old call frame
 mov ebp, esp ; initialize new call frame
 ...do stuff...
 mov esp, ebp
 pop ebp ; restore old call frame
 ret ; return

add esp, 12 ; remove call arguments from frame

From https://en.wikipedia.org/wiki/X86_calling_conventions#cdecl

Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push 3
push 2
push 1
call callee ; call subroutine ‘callee'

 callee:
 push ebp ; save old call frame
 mov ebp, esp ; initialize new call frame
 ...do stuff...

Saved base pointer

Return address

Local variables

Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push 3
push 2
push 1
call callee ; call subroutine ‘callee'

 callee:
 push ebp ; save old call frame
 mov ebp, esp ; initialize new call frame
 ...do stuff...

Saved base pointer

Return address

Local variables

Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push 3
push 2
push 1
call callee ; call subroutine ‘callee'

 callee:
 push ebp ; save old call frame
 mov ebp, esp ; initialize new call frame
 ...do stuff...

Saved base pointer

Return address

Local variables

Anatomy of a Stack Frame

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push 3
push 2
push 1
call callee ; call subroutine ‘callee'

 callee:
 push ebp ; save old call frame
 mov ebp, esp ; initialize new call frame
 ...do stuff...

Saved base pointer

Return address

Local variables

 mov esp, ebp
 pop ebp ; restore old call frame
 ret ; return

💣😓

Morris Worm (circa 1988)
int main(int argc, char *argv[]) {
 char line[512];
 struct sockaddr_in sin;
 int i, p[2], pid, status;
 i = sizeof (sin);
 if (getpeername(0, &sin, &i) < 0) fatal(argv[0], "getpeername");
 if (gets(line) == NULL) exit(1);
 register char *sp = line;
 ...
 if ((pid = fork()) == 0) {
 close(p[0]);
 if (p[1] != 1) {
 dup2(p[1], 1);
 close(p[1]);
 }
 execv("/usr/ucb/finger", av);
 _exit(1);
 }
 ...
}

“Convert a String to Uppercase in C,” circa 2020

#include <stdio.h>
#include <string.h>
int main() {
 char s[100];
 int i;
 printf("\nEnter a string : ");
 gets(s);
 for (i = 0; s[i]!='\0'; i++) {
 if(s[i] >= 'a' && s[i] <= 'z') {
 s[i] = s[i] -32;
 }
 }
 printf("\nString in Upper Case = %s", s);
 return 0;
}

Okay, well, I’m smarter than that.

Professional engineers don’t make such silly mistakes, right?

“Like many modern cars, our car’s cellular capabilities facilitate a variety of safety and
convenience features (e.g. the car can automatically call for help if it detects a crash).

However, long-range communication channels also offer an obvious target for potential
attackers…”

The car has a 3G modem, but 3G service isn’t available everywhere (this was especially
true in 2011, when the paper was written). As such, the car also has an analog audio
modem with an associated telephone number! “To synthesize a digital channel in this

environment, the manufacturer uses Airbiquity’s aqLink software modem to covert
between analog waveforms and digital bits.”

“As mentioned earlier, the aqLink code explicitly supports packet sizes up to 1024 bytes.
However, the custom code that glues aqLink to the Command program assumes that

packets will never exceed 100 bytes or so (presumably since well-formatted command
messages are always smaller)”

“We also found that the entire attack can be implemented in a completely blind
fashion — without any capacity to listen to the car’s responses. Demonstrating this, we
encoded an audio file with the modulated post-authentication exploit payload and

loaded that file onto an iPod. By manually dialing our car on an office phone and then
playing this “song” into the phone’s microphone, we are able to achieve the same

results and compromise the car.”

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

Well I just won’t work for a car company?Umm…

One-byte overflow in Chrome OS:
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

Spot the overflow

char buffer[128];
int bytesToCopy = packet.length;
if (bytesToCopy < 128) {
 strncpy(buffer, packet.data, bytesToCopy);
}

Spot the overflow

char buffer[128];
int bytesToCopy = packet.length;
if (bytesToCopy < 128) {
 strncpy(buffer, packet.data, bytesToCopy);
}

Proper bounds check

Use of strncpy (avoiding unsafe strcpy)

Spot the overflow

char buffer[128];
int bytesToCopy = packet.length;
if (bytesToCopy < 128) {
 strncpy(buffer, packet.data, bytesToCopy);
}

Signed

Cast to size_t (unsigned)

More reasons to come on Thursday

Aside: doesn’t Valgrind tell you about these things?

==1234== Memcheck, a memory error detector
==1234== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==1234== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==1234== Command: ./poop
==1234==
==1234== Invalid write of size 8
==1234== at 0x400BCF: poop (main.c:24)
==1234== by 0x400CCC: plop (main.c:100)
==1234== by 0x400DFF: main (main.c:200)
==1234== Address 0x51f25c0 is 16 bytes inside a block of size 20 alloc'd
==1234== at 0x4C2B6CD: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==1234== by 0x400BBB: poop (main.c:20)
==1234== by 0x400CCC: plop (main.c:100)
==1234== by 0x400DFF: main (main.c:200)

Why not use GC’ed languages?

Dear X,

I am looking forward to meeting you, and to a great year in Kimball!

Please consider an idea that I think will make life just a tiny bit better for everyone in the dorm this
year.

Last year, a number of us noticed that some people in the dorm were pretty messy, their rooms
were a mess, and trash piled up.

It turns out that not only are these trash piles unpleasant, but they can be a hazard, potentially even
to others.

According to The Cardinal Safety Letter (2012) :

“We have seen some fairly impressive mountains of trash overflowing the little dorm room trash
cans. This is not sanitary in the least!”

We also know that exhortations to clean up too often fall on deaf ears.

… more pleas follow …

The good news is that we have a completely painless solution that will be totally inclusive,
promote a clean dorm, reduce stress, and engages with Stanford’s goal of sustainability.

It’s all set to go, just pending your go-ahead.

I will collect the trash from each room in Kimball every week* to help everyone maintain a
clean living environment. For less than $.50 per student per weekday, we’ll take out everyone’s
trash for all 10 weeks of the quarter.* By using dorm funds, it doesn’t really cost anyone
anything, yet we all benefit.

It’s a great use of dorm funds, because it’ll benefit every member of the dorm equally, which is
exactly what dorm funds are for.

It’s free for the residents: all we have to do is tie our bags of trash, place them outside our
doors by midnight on Sunday, and I’ll pick them up on Monday – providing a clean start to the
week. Students will be saved the hassle and unpleasantness of completing this tiresome
chore, and none of us will have to put up with the messy consequences of piles of trash in
dorm rooms.

For just $25 per student, the entire dorm’s trash is taken care of for the entire quarter.

A twist

! Instead of putting your trash outside, leave it inside your room

! The GC will come knocking when it’s time to clean up

Downsides of garbage collection

! Expensive

! No matter what type of garbage collection is used, there will always be nontrivial

memory overhead

! Disruptive

! Drop what you’re doing — it’s time for GC!

! Non-deterministic

! When will the next GC pause be? Who knows! Depends on how much memory
is being used

! Precludes manual optimization

! In some situations, you may want to structure your data in memory in a specific

way in order to achieve high cache performance

! GC can’t know how you will use memory, so it optimizes for the average use

case

Note latency spikes every 2 minutes

LinkedIn Engineering:

“In our production environments, we have seen unexplainable large

STW pauses (> 5 seconds) in our mission-critical Java applications.”

https://engineering.linkedin.com/blog/2016/02/eliminating-large-jvm-gc-pauses-caused-by-background-io-traffic

https://engineering.linkedin.com/blog/2016/02/eliminating-large-jvm-gc-pauses-caused-by-background-io-traffic

Latency matters

! User interfaces

! Games

! Self-driving cars

! Payment processing

! High frequency trading

Garbage collectors aren’t all about safety

! Later in the quarter, we’ll learn about race conditions

! Garbage collection does not preclude race conditions! Memory safety issues

persist even in garbage-collected environments

Design goals of Rust

About CS 110L 👋

Course outline

! Corequisite: CS 110

! Pass/fail

! You will get out what you put in

! First 3-4 weeks: Safety in a CS 107 context

! Rest of course: Safety in a CS 110 context

! Components:

! Lecture

! Weekly exercises (20%)

! Two projects (60%)

! Participation (20%)

Projects

! Project 1: Mini GDB

! Project 2: High-performance web server

! Functionality grading only

! The Rust compiler will be your interactive style grader!

! These projects are intended to give you additional experience in building real

systems, while having to think about some of the safety issues we’re
discussing

! Have a different idea? Let us know!

Exercises

! Each week, we’ll give you some small programming problems to reinforce
the week’s lecture material

! Expected time: 1-3 hours

! In addition, you’ll be asked to complete an anonymous survey about how the

class is going and how we can improve

Week 1 Exercise

! The first week, we'll be mainly covering conceptual material about Rust in
lecture

! But that's no excuse for you to not start playing around with the language and
getting used to its syntax!

! The first exercise will be to implement a simple hangman command line game.

! Our goal is to expose you to some of Rust's syntax without you having to deal

with some of its quirks (which we'll discuss in more detail next week).

! You'll probably have to do some of your own searching through docs/stack

overflow/etc, but we're available on Slack to support you! (as are your fellow
classmates)

Work for Thursday

Before class, spend 10 minutes trying to spot as many bugs as you can find in
this code snippet: 
https://web.stanford.edu/class/cs110l/lecture-notes/lecture-02/ 
(From the course website, click “Lecture notes” under Lecture 2)

https://web.stanford.edu/class/cs110l/lecture-notes/lecture-02/

