Intro to Networking

Ryan Eberhardt

August 4, 2021

|P addresses

e Every computer on a network has an “IP address” uniquely identifying it on the
network
o An IPv4 address is 4 bytes. Usually written as 4 numbers, 0-255, separated by

periods (e.g 192.168.1.230)

e If you want to talk to a computer, you need to know its |IP address

e How do you find the IP address? (Too hard to remember!)
o Your computer is configured with the address of a DNS server (can be hardcoded)
o When you want to reach “www.google.com,” ask the DNS server for the |IP address
o |P address of www.google.com:

« dig +noall +answer www.google.com
wWwWw.google.com. 204 IN A 216.58.194.16

DNS resolution

Hi 8.8.8.8, what's the IP address for www.google.com?

www.google.com is at 216.58.194.16! @!’

10.0.4.110 3.8.8.3

Here you go!

216.58.194.10

Understanding port numbers

“Host” (computer) = apartment complex

“Host” (computer) = apartment complex

“Host” (computer) = apartment complex

‘IP address” = apartment complex address

“Host” (computer) = apartment complex

‘IP address” = apartment complex address

171.67.215.200 10.0.4.128

‘Host” (computer) = apartment complex
‘IP address” = apartment complex address

"Port number” = apartment number

171.67.215.200 10.0.4.128

‘Host” (computer) = apartment complex
‘IP address” = apartment complex address

"Port number” = apartment number

171.67.215.200 10.0.4.128

Want to go to http://web.stanford.edu?
Use DNS to find web.stanford.edu's |IP address: 171.67.215.200
Go to that apartment complex
Knock on the apartment that runs the HTTP service (port 80)

‘Host” (computer) = apartment complex
‘IP address” = apartment complex address

"Port number” = apartment number

171.67.215.200 10.0.4.128

Want to SSH into myth.stanford.edu?
Use DNS to find myth.stanford.edu's |IP address: 171.64.15.29
Go to that apartment complex
Knock on the apartment that runs the SSH service (port 22)

Starting a server

Apartment complex = host

171.67.215.200

Apartment complex = host

Each host will have some processes running on |t

171.67.215.200

Each host will have some processes running on It

pid 1234

S) I I O

O e I N

171.67.215.200

“‘Binding” to a port:

pid 1234

S) I I O

L e I I I

171.67.215.200

“‘Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment)

pid 1234

S) I I O

L e I I I

171.67.215.200

“‘Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment)

pid 1234

S) I I O

L e I I I

171.67.215.200

“‘Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment)
Process installs a “waiting list” outside the apartment

pid 1234

S) I I O

L e I I I

171.67.215.200

“‘Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment)
Process installs a “waiting list” outside the apartment

pid 1234

S) I I O

L e I I I

171.67.215.200

“‘Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment)
Process installs a “waiting list” outside the apartment
Waiting list Is attached to a file descriptor, so the process can see when someone arrives

pid 1234

S) I I O

L e I I I

171.67.215.200

“‘Binding” to a port:
Process “sets up shop” in an apartment. (Only one process per apartment)
Process installs a “waiting list” outside the apartment
Waiting list Is attached to a file descriptor, so the process can see when someone arrives

pid 1234

owe T T 1
——

e W] T T 11

L e I I

171.67.215.200

“‘Binding” to a port:
Other processes can bind to other ports
(no two processes can bind to the same port — one application per apartment!)

pid 1234

owe LT T T
F."

e W] T T 11

L) I N

171.67.215.200

“‘Binding” to a port:
Other processes can bind to other ports
(no two processes can bind to the same port — one application per apartment!)

bid 1234 pid 2345

e [y] gl g | [oee | o] glpp] | [
— ;/”

el L] e S I) I O

OF table

171.67.215.200

“‘Binding” to a port:
A process can bind to multiple ports, If it desires

oid 1234 bid 2345

oeve |y gl || ouve |y gl | |
—— ——

el L] e S I) I O

OF table

171.67.215.200

“‘Binding” to a port:
A process can bind to multiple ports, If it desires

bid 1234 pid 2345

oave ¢] gl gl | [oave |9 | g{p [l |-
— =

el L] e S Y
A

OF table

Connecting a client

Say we have a server bound on 171.67.215.200:80

pid 1234

owe AT T 1
——

] 7

T e o N

171.67.215.200

On some other computer, we want to talk to that server

pid 1234 pid 1234
D table nﬁnun.._ D table I!,llﬂ----
/-’ —_—

S i S

171.67.215.200 10.0.4.110

outgoing ports

The “client” walks out to try to find 171.67.215.200:80

oid 1234 bid 1234
D table nﬁnun.._ D table I!_llﬂ----
/-’ Pl

S i S

171.67.215.200 10.0.4.110

outgoing ports

If successful, it adds itself to the waiting list

oid 1234 bid 1234

D table nﬁnun.._ D table I!,llﬂ----
/’ —_

S i S

171.67.215.200 10.0.4.110

outgoing ports

The server sees the client through its waiting list file descriptor

oid 1234 bid 1234
D table nﬁnun.._ D table I!_llﬂ----
/-’ Pl

S i S

171.67.215.200 10.0.4.110

outgoing ports

r

It takes the client of

‘socket” that

pid 1234

the waliting list and creates a new bidirectional
it can use to talk directly with the client

pid 1234

e ol glp g |] e |l gl ||]
L

~——

S i S

L e I N

171.67.215.200

L e I I I

10.0.4.110

outgoing ports

't takes the client off the waiting list and creates a new bidirectional
‘socket” that it can use to talk directly with the client

bid 1234 oid 1234
FD table nﬁnunn._ D table I!,ﬂﬂ----
 — —— F—

OF ek ---- S

171.67.215.200 ' 10.0.4.110

outgoing ports

Successful in making a connection, the client also creates a new file
descriptor it can use to talk to the server

bid 1234 oid 1234
FD table nﬁnunn._ D table I!,ﬂﬂﬂ---
 — —— —

oree el | [] S
/] \

171.67.215.200 ' 10.0.4.110 \

outgoing ports

It the client writes to Its 1d 3, it will be readable on the server's td 4

pid 1234

owe TG L 1| |
 ——

oo GIEIEL T TT| o

\
171.67.215.200 ' 10.0.4.110 \

Similarly, If the server writes to fd 4, it will be readable on the client's td 3

oid 1234 bid 1234

owe L T T e |l glpl o] |]
— ———

OF ek ---- S
\

171.67.215.200 ' 10.0.4.110 \

outgoing ports

The server can talk to multiple clients at the same time, using separate file
descriptors (often using a thread facilitate each conversation over each fd)

pid 1234 °°

thread 1 thread 2

I'Illﬂllllll-
7

oree] |

— J Z

oid 1234 oid 1234

Garage/
outgoing outgoing

Networking syscalls

. You don't need to know these super well, but you should
have some sense of what is happening behind the scenes.

int fd = socket(AF INET, SOCK STREAM, 0);

Allocates a socket that will
stream of comr

use IPv4 and

CP (

CP provides a reliable pipe-like

munication — more next Wednesday).

The socket isn't attached to anything yet.

pid 1234

S) I I O

L e I I I

171.67.215.200

int fd = socket(AF INET, SOCK STREAM, 0);

Allocates a socket that will
stream of comr

use IPv4 and

CP (

CP provides a reliable pipe-like

munication — more next Wednesday).

The socket isn't attached to anything yet.

OF table

pid 1234

e |l glp g |]
—

FiT
L e o I N

171.67.215.200

struct sockaddr in address;

memset (&address, 0, sizeof(address)); Initialize a struct sockaddr in
address.sin family = AF INET; with the |IP address and port that
address.sin addr.s addr = htonl(INADDR ANY); we wish to listen on

address.sin port =

htons(port);

pid 1234

e |l glp g |]
—

] 7
e [ormwm]]|

171.67.215.200

bind(fd, (struct sockaddr *)&address, sizeof(address))
‘Move into the apartment”: Tell the OS that we would like to use the specitied
|P/port. It that port is already in use, bind will return -1.

pid 1234

e |l glp g |]
—

e W] T T 11
L e o I N

171.67.215.200

bind(fd, (struct sockaddr *)&address, sizeof(address))
‘Move into the apartment”: Tell the OS that we would like to use the specitied
|P/port. It that port is already in use, bind will return -1.

pid 1234

owe T T 1
——

e W] T T 11

L e I I

171.67.215.2(C

listen(fd, 128)
Install a waiting list with room for 128 waiting clients, and start listening for
connections (when someone shows up, they will be added to the waiting list)

pid 1234

owe T T 1
——

e W] T T 11

L e I I

171.67.215.2(C

listen(fd, 128)
Install a waiting list with room for 128 waiting clients, and start listening for
connections (when someone shows up, they will be added to the waiting list)

pid 1234

owe T T 1
——

e W] T T 11

L e I I

171.67.215.200

int fdConnectedToClient = accept(fd)
Watch the waiting list, waiting for someone to connect. (accept blocks until then.)

pid 1234

owe LT T T
F."

e W] T T 11

L) I N

171.67.215.200

On some other computer, we want to talk to web.stanford.edu (the server)

oid 1234 bid 1234
D table nﬁnun.._ D table I!_llﬂ----
/-’ —_—

S i S

171.67.215.200 10.0.4.110

outgoing ports

http://web.stanford.edu

First, we need to do a DNS lookup to figure out its IP address:
struct hostent *he = gethostbyname("web.stanford.edu");

oid 1234 bid 1234
D table nﬁnun.._ D table nﬁnu..._
/-’ Pl

S i S

171.67.215.200 10.0.4.110

outgoing ports

We allocate a socket to use for this connection:
int fd = socket(AF INET, SOCK STREAM, 0);

pid 1234 pid 1234
D table nﬁnun.._ D table I!,llﬂ----
/-’ —_—

S i S

171.67.215.200 10.0.4.110

outgoing ports

We allocate a socket to use for this connection:
int fd = socket(AF INET, SOCK STREAM, 0);

oid 1234 bid 1234

D table nﬁnun.._ D table I!,llﬂﬂ---
/’ ,’

S i S

171.67.215.200 10.0.4.110

outgoing ports

struct sockaddr in address;
memset (&address, 0, sizeof(address));

We construct a struct sockaddr In

1O SpeCify which hOSt/pOl’t we wish address.sin family = AF INET;

. _ address.sin port = htons(80);

O connect to: address.sin addr = *((struct in addr *)he->h addr);
oid 1234 oid 1234

D table nﬁnun.._ D table nﬁnuu.._
—_— _~ /’

S i S

L e e N

171.67.215.200 10.0.4.110

outgoing ports

Finally, we tell the OS to use our socket to connect to the specified host/port:
connect(fd, (struct sockaddr *) &address, sizeof(address))

oid 1234 bid 1234

D table nﬁnun.._ D table nﬁnuu.._
/’ ,’

S i S

171.67.215.200 10.0.4.110

outgoing ports

Finally, we tell the OS to use our socket to connect to the specified host/port:
connect(fd, (struct sockaddr *) &address, sizeof(address))

oid 1234 bid 1234
D table nﬁnun.._ D table nﬁnuu.._
/-’ ,’

S i S
\

171.67.215.200 10.0.4.110 \

outgoing ports

At this point, the server's accept call returns:
int fdConnectedToClient = accept(£fd)

oid 1234 bid 1234

D table nﬁnun.._ D table I!,llﬂﬂ---
/’ ,’

S i S
\

171.67.215.200 10.0.4.110 \

outgoing ports

At this point, the server's accept call returns:
int fdConnectedToClient = accept(£fd)

pid 12340 bid 1234

I'Illﬂllll-- e |l glpl o] |]
— ———

OF el ---- S
\

171.67.215.200 ' 10.0.4.110 \

outgoing ports

What can you do with this”

What can you do with this?

e Multiprocessing: you don’t need to implement everything within your
program. You can use other executables on the machine
e Networking: you don’t even need to have everything working on one machine.
You can use other machines to help you out
o Google Images: search images of cats within a fraction of a second. It
wouldn’t be possible to store all the images that Google Images has on a
single machine
o Distributed computation: e.g. rendering an animated film using a large
server farm

What can you do with this?

e | ook up words in a dictionary:

echo "define * networking" | nc dict.org 2628
e Print to your networked printer(!!!):

echo "Hello world" | nc 10.0.4.175 9100

https://retrohacker.substack.com/p/bye-cups-printing-with-netcat

Networking APls

e API: structured way of asking for something and getting a response (more next
Monday)
e hitp://icanhazip.com: tells you your IP address
e http://apl.open-notify.org/astros.json: list astronauts currently in space
e htips://www.placecage.com/200/400: generate a placeholder image of the given
dimensions featuring Nick Cage
e hitps://placekitten.com/: same as above, but with kittens
e Other lists:
o https://apilist.fun/
o https://www.reddit.com/r/webdev/comments/3wrswc/
what are some fun apis to play with/

http://icanhazip.com
http://api.open-notify.org/astros.json
https://www.placecage.com/200/400
https://placekitten.com/
https://apilist.fun/
https://www.reddit.com/r/webdev/comments/3wrswc/what_are_some_fun_apis_to_play_with/
https://www.reddit.com/r/webdev/comments/3wrswc/what_are_some_fun_apis_to_play_with/

