
CS 110 Summer 2018
Midterm Review Session

Matthew Katzman Thanks to Ryan
Eberhardt

Kristine Guo
Grace Hong

Hemanth Kini for
some slide materials.

Exam Time
Monday, July 23

7PM-9PM

Hewlett 201

Study Resources
Be sure to look over:

● Assignments and Class Notes
● Labs and Handouts
● Practice Midterms

FILESYSTEMS
See assign1

The Important Types

● The Inode
● The File
● The Directory
● The Link

The Inode/FIle Layers

Directories

● A DIRECTORY IS A FILE
● Stores some important

information, but mostly
made up of dirEnt’s
(directory entries)

● Each of these consists of a
filename and an inumber.

Links (two types)
HARD LINKS:

● The SAME as directory entries
● Map a filename to an inumber
● Increase the file’s reference count

SYMBOLIC (soft) LINKS:

● Different type of file
● File contents include path to file
● Does not increase reference count

Where’s Hulk?
Hulk is located at /MCU/space/Sakaar/arena/Hulk.smash. How can we find him?

Where’s Hulk?
Hulk is located at /MCU/space/Sakaar/arena/Hulk.smash. How can we find him?

DIRECTORY (/)

1 .

1 ..

2 MCU

3 wormhole

2
Refcnt: 4

Inode Block

DIRECTORY
(/MCU)

Where’s Hulk?
Hulk is located at /MCU/space/Sakaar/arena/Hulk.smash. How can we find him?

DIRECTORY (MCU)

2 .

1 ..

4 space

5 quinjet

4
Refcnt: 4

Inode Block

DIRECTORY
(/MCU/space)

Where’s Hulk?
Hulk is located at /MCU/space/Sakaar/arena/Hulk.smash. How can we find him?

DIRECTORY (space)

4 .

2 ..

6 Sakaar

7 Asgard

6
Refcnt: 3

Inode Block

DIRECTORY
(/MCU/space/
Sakaar)

Where’s Hulk?
Hulk is located at /MCU/space/Sakaar/arena/Hulk.smash. How can we find him?

DIRECTORY (Sakaar)

6 .

4 ..

8 arena

9 monster.smash

8
Refcnt: 3

Inode Block

DIRECTORY
(/MCU/space/
Sakaar/arena)

Where’s Hulk?
Hulk is located at /MCU/space/Sakaar/arena/Hulk.smash. How can we find him?

DIRECTORY (arena)

5 .

2 ..

9 Hulk.smash

10 Waititi

9
Refcnt: 2

Inode Block

“HULK...SMASH!”

Where’s Hulk?
Hulk is located at /MCU/space/Sakaar/arena/Hulk.smash. How can we find him?

DIRECTORY (/)

1 .

1 ..

2 MCU

3 wormhole

3
Refcnt: 1

Inode Block

“/MCU/space/
Sakaar”

The Filesystem Tables (stored in Kernel Space)

a.txt b.txt c.txt d.txtVnode table

The Filesystem Tables

refcnt = 1
type = FILE
inumber = 17

refcnt = 2
type = FILE
inumber = 32

refcnt = 1
type = FILE
inumber = 5Vnode table

status = r, refcnt = ?
cursor = 10

status = r, refcnt = ?
cursor = 0

status = w, refcnt = ?
cursor = 50

status = w, refcnt = ?
cursor = 15

File entry
table

The Filesystem Tables

refcnt = 1
type = FILE
inumber = 17

refcnt = 2
type = FILE
inumber = 32

refcnt = 1
type = FILE
inumber = 5Vnode table

status = r, refcnt = 2
cursor = 10

status = r, refcnt = 1
cursor = 0

status = w, refcnt = 1
cursor = 50

status = w, refcnt = 1
cursor = 15

File entry
table

File
descriptor

table

0 1 2 3 4 5 6 7

STDIN STDOUT STDERR

The Filesystem Tables

refcnt = 1
type = FILE
inumber = 17

refcnt = 2
type = FILE
inumber = 32

refcnt = 1
type = FILE
inumber = 5Vnode table

status = r, refcnt = 2
cursor = 10

status = r, refcnt = 1
cursor = 0

status = w, refcnt = 1
cursor = 50

status = w, refcnt = 0
cursor = 15

File entry
table

File
descriptor

table

0 1 2 3 4 5 6 7

STDIN STDOUT STDERR

The Filesystem Tables

refcnt = 1
type = FILE
inumber = 17

refcnt = 2
type = FILE
inumber = 32

refcnt = 0
type = FILE
inumber = 5Vnode table

status = r, refcnt = 2
cursor = 10

status = r, refcnt = 1
cursor = 0

status = w, refcnt = 1
cursor = 50

File entry
table

File
descriptor

table

0 1 2 3 4 5 6 7

STDIN STDOUT STDERR

The Filesystem Tables

refcnt = 1
type = FILE
inumber = 17

refcnt = 2
type = FILE
inumber = 32Vnode table

status = r, refcnt = 2
cursor = 10

status = r, refcnt = 1
cursor = 0

status = w, refcnt = 1
cursor = 50

File entry
table

File
descriptor

table

0 1 2 3 4 5 6 7

STDIN STDOUT STDERR

MULTIPROCESSING
See assign2, assign3

System Calls
Interact with the raw blocks that users do not (and
should not) have access to (privileged operations)

● Syscalls you should know:
○ open()
○ read()
○ write()
○ close()
○ pipe()
○ dup2()
○ fork()
○ execvp()
○ kill()
○ waitpid()
○ kill()
○ signal()
○ sigprocmask()
○ sigsuspend()

pipe(int[] fds)

STDIN STDOUT STDERR

pipe(int[] fds)

STDIN STDOUT STDERR

status = r, refcnt = 1, cursor = 0 status = w, refcnt = 1, cursor = 0

refcnt = 1, type = PIPE refcnt = 1, type = PIPE

fork()

STDIN STDOUT STDERR

status = r, refcnt = 1, cursor = 0 status = w, refcnt = 1, cursor = 0

refcnt = 1, type = PIPE refcnt = 1, type = PIPE

fork()

STDIN STDOUT STDERR

status = r, refcnt = 2, cursor = 0 status = w, refcnt = 2, cursor = 0

refcnt = 1, type = PIPE refcnt = 1, type = PIPE

STDIN STDOUT STDERR

dup2(int oldfd, int newfd)

STDIN STDOUT STDERR

status = r, refcnt = 2, cursor = 0 status = w, refcnt = 2, cursor = 0

refcnt = 1, type = PIPE refcnt = 1, type = PIPE

STDIN STDOUT STDERR

Calling dup2(3, STDIN_FILENO) in
child:

dup2(int oldfd, int newfd)

STDIN STDOUT STDERR

status = r, refcnt = 3, cursor = 0 status = w, refcnt = 2, cursor = 0

refcnt = 1, type = PIPE refcnt = 1, type = PIPE

STDIN STDOUT STDERR

Calling dup2(3, STDIN_FILENO) in
child:

What will print here?
void createUltron() {

pid_t pid = fork();
if (pid == 0) {

printf(“Ultron is here.”);
}
printf(“Jarvis is here.”);

}

int main(int argc, char* argv[]) {
createUltron();
while(true) {

pid_t pid = waitpid(-1, NULL, 0);
if (pid == -1) break;

}
assert(errno == ECHILD);
printf(“The world is safe.”);

}

What will print here?
void createUltron() {

pid_t pid = fork();
if (pid == 0) {

printf(“Ultron is here.”);
return;

}
printf(“Jarvis is here.”);

}

int main(int argc, char* argv[]) {
createUltron();
while(true) {

pid_t pid = waitpid(-1, NULL, 0);
if (pid == -1) break;

}
assert(errno == ECHILD);
printf(“The world is safe.”);

}

What will print here?
void createUltron() {

pid_t pid = fork();
if (pid == 0) {

printf(“Ultron is here.”);
exit(0);

}
printf(“Jarvis is here.”);

}

int main(int argc, char* argv[]) {
createUltron();
while(true) {

pid_t pid = waitpid(-1, NULL, 0);
if (pid == -1) break;

}
assert(errno == ECHILD);
printf(“The world is safe.”);

}

waitpid()

First argument (pid_t pid):

● <-1 (any child with pgid = |pid|
● -1 (any child)
● 0 (any child with pgid = getpgid())
● >0 the child with pid = pid.

Third argument (int options)

● 0 (returns only after child terminates)
● WUNTRACED (also after child stops)
● WNOHANG (returns immediately)
● WCONTINUED (also after child continues)

Second argument (int* status):

● Create int status and pass in
&status

○ WIFEXITED(status)
○ WIFSTOPPED(status)
○ WIFCONTINUED(status)

Signals
The ones you should know:

● SIGINT (ctrl + C)
● SIGTSTP (ctrl + Z)

The two above can be caught and handled. The
two below cannot:

● SIGKILL
● SIGSTOP

These have the same respective behavior, but
cannot be caught.

● SIGCHLD
● SIGCONT

Wrong universe, but it worked too well...

sigsuspend(const sigset_t* mask)

Does the following ATOMICALLY:

● sigprocmask(SIG_SETMASK, &mask, &old);
● sleep(); // wait for signal to wake us up
● sigprocmask(SIG_SETMASK, &old, NULL);

What will print?
int counter = 0;

static void reapChild(int sig) {
printf(“Wakanda Forever!”);
counter++;

}

int main(int argc, char* argv[]) {
pid_t pid = fork();
if (pid == 0) {

char[] argv = [“echo”, “Black Panther”, NULL];
execvp(argv[0], argv);

}
sigset_t mask;
sigemptyset(&mask);
while (counter < 1) {

sigsuspend(&mask);
}
printf(“T\’Challa has won.”);

}

What will print?
int counter = 0;

static void reapChild(int sig) {
printf(“Wakanda Forever!”);
counter++;

}

int main(int argc, char* argv[]) {
pid_t pid = fork();
if (pid == 0) {

char[] argv = [“echo”, “Black Panther”, NULL];
execvp(argv[0], argv);

}
sigset_t mask;
sigemptyset(&mask);
while (counter < 1) {

sigsuspend(&mask);
}
printf(“T\’Challa has won.”);

}

RACE CONDITION!!!

What will print?
int counter = 0;

static void reapChild(int sig) {
printf(“Wakanda Forever!”);
counter++;

}

int main(int argc, char* argv[]) {
pid_t pid = fork();
if (pid == 0) {

char[] argv = [“echo”, “Black Panther”, NULL];
execvp(argv[0], argv);

}
sigset_t mask;
sigemptyset(&mask);
sigset_t existing = blockSIGCHLD();
while (counter < 1) {

sigsuspend(&mask);
}
unblockSIGCHLD(existing);
printf(“T\’Challa has won.”);

}

sigprocmask(int how, const sigset_t* set, sigset_t* oldset)

sigset_t blockSIGCHLD() {
sigset_t mask;
sigset_t existing;
sigemptyset(&mask);
sigaddset(&mask, SIGCHLD);
sigprocmask(SIG_BLOCK, &mask, &existing);
return existing;

}

void unblockSIGCHLD(sigset_t existing) {
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGCHLD);
sigprocmask(SIG_UNBLOCK, &mask, &existing);

}

Virtual Memory

Virtualization
Every process thinks it has exclusive access to addresses 0x00000000 to 0xffffffff.

Virtualization
Every process thinks it has exclusive access to addresses 0x00000000 to 0xffffffff.

Virtual Memory
Instead, the kernel keeps the
MEMORY MANAGEMENT UNIT
which helps map the virtual
address spaces of every process
to actual locations in physical
memory.

Lazy Loading

If a process needs to use a
large library, the library will
only be loaded into working
memory as needed.

That way we can run many
more processes at once.

Memory management is LAZY like these guys.

Copy-on-write

While every process has its
own virtual memory space,
physical memory is only
duplicated when
necessary.

In fact, this is not even
done when a process
reads from memory, only
when it writes.

Memory management is LAZY like these guys.

Question

What are some
situations in which the
same virtual address in
multiple processes
map to the same
physical address in
main memory? Iron Man is stumped. Are you?

Question

● Right after a fork if the OS is using copy-on-write

● Forked processes explicitly want to share data among
themselves (mmap)

● Shared code segments

What are some
situations in which the
same virtual address in
multiple processes
map to the same
physical address in
main memory?

Scheduling

Scheduling

Each process has an associated
PCB (process control block)
representing its state.

This includes (among other things):

● Register values
○ Including %rip so it knows

what code was being
executed

● PID

Scheduling

Each process has an associated
PCB (process control block)
representing its state.

This includes (among other things):

● Register values
○ Including %rip so it knows

what code was being
executed

● PID

From Lab 2:

● What commands may or may not move a
running process to the blocked set?

● What commands are 100% guaranteed to
move a running process to the blocked
set?

● What needs to happen for a blocked
process to be moved back into the ready
queue?

MULTITHREADING
No assignments yet (assign4, assign5, assign6)

What is a thread?
● Threads are sometimes referred to as

“lightweight processes”.
● They still have their own stacks, but unlike

processes they share the same heap, global
variables, file descriptor table, etc.

● We create them in C++ by passing in the
method we want to run in the newly spawned
thread:

thread newThread =
thread(sayHello());

● The above line will spawn a thread called
newThread that will run concurrently until
sayHello() is completed.

Joining threads
If you forget to call waitpid() on a process, you
have a memory leak.

If you forget to call .join() on a thread, your code
will crash!

Passing arguments to threads
Suppose we want a new thread to run the method foobar(int n, semaphore& sem),
where foobar() is a method in MyClass. There are a few ways to do so:

● thread t([this, n, &sem] {foobar(n, sem)});
○ This captures all necessary variables and defines a lambda function that takes no

parameters
● thread t([this](int number, semaphore& s) {

....foobar(number, s);
}, n, ref(sem);
○ This instead defines a lambda function that takes two parameters

● thread t(&MyClass::foobar, this, n, ref(sem));
○ This is more like what we saw in Lab 3.

Synchronization

This picture from last quarter’s review session
sums this up better than any Marvel picture.

Mutex
int main(int argc, const char *argv[]) {
 int counter = 0;

 thread thread1 = thread([&] () {
 counter++;
 });
 thread thread2 = thread([&] () {
 counter++;
 });

 thread1.join();
 thread2.join();

 cout << "counter = " << counter << endl;
 return 0;
}

As we saw, the code on the left is not
thread-safe. Because ++ is not an atomic
operation (the value is copied into a register,
increased, and copied back), it is possible that
we will end up printing

“counter = 1”

Mutex
static mutex counterLock;

int main(int argc, const char *argv[]) {
 int counter = 0;

 thread thread1 = thread([&] () {
 counterLock.lock();
 counter++;
 counterLock.unlock();
 });
 thread thread2 = thread([&] () {
 counterLock.lock();
 counter++;
 counterLock.unlock();
 });

 thread1.join();
 thread2.join();

 cout << "counter = " << counter << endl;
 return 0;
}

This fixes the issue because whenever a thread
is accessing or modifying counter’s value, no
other thread can be doing so.

When counterLock.lock() is reached in
one thread, it will block any other thread that
reads that line until the lock is released.

Be sure to release the lock before going out of
scope.

Or you could use a...

Lock Guard
static mutex counterLock;

int main(int argc, const char *argv[]) {
 int counter = 0;

 thread thread1 = thread([&] () {
 lock_guard<mutex> lg(counterLock);
 counter++;
 });
 thread thread2 = thread([&] () {
 lock_guard<mutex> lg(counterLock);
 counter++;
 });

 thread1.join();
 thread2.join();

 cout << "counter = " << counter << endl;
 return 0;
}

This is the same thing as using a mutex, except
will automatically unlock when lg goes out of
scope.

Condition Variable
Unlike mutexes and lock guards, these provide
notifications when a state has changed. In this
sense, they are similar to signals.

Similar to sigsuspend() , we get race
conditions if we repeatedly check a condition
and then wait until that condition may no longer
hold. Just as sigsuspend() atomically
unblocks signals and waits, condition variables
atomically check the condition and wait.

Condition Variable commands:

● condition_variable_any cv;
● cv.wait(mutex m, Predicate p);
● cv.notify_all();

Also cv.notify_one() , but more on that
later.

Condition Variable
while (numQueued == 0) {

//WHAT IF numQueued becomes 0 right here? RACE CONDITION!!!
 numQueuedLock.unlock();
 queueCv.wait();
 numQueuedLock.lock();
}

vs.

queueCv.wait(numQueuedLock, [&](){return numQueued > 0;}); //Since this is done atomically, no risk.

Semaphore
Very often, we will want to limit the number of
threads that can be doing something, but not
restrict it to a single thread.

Semaphore
Very often, we will want to limit the number of
threads that can be doing something, but not
restrict it to a single thread.

ENTER SEMAPHORE!!!

Semaphore
Very often, we will want to limit the number of
threads that can be doing something, but not
restrict it to a single thread.

A semaphore can be thought of as a set of
permission slips. The initial value is the number
of permission slips, signal() adds a
permission slip, and wait() (once it is
unblocked) takes a permission slip. Again, this
is all done atomically.

Semaphore commands:

● semaphore sem(int value);
● sem.signal();
● sem.wait();

Just like with mutexes (mutices? this seems to
be a point of contention on stack overflow...) be
sure to signal() before going out of scope,
because signaling is not the default behavior.

Semaphore
Very often, we will want to limit the number of
threads that can be doing something, but not
restrict it to a single thread.

A semaphore can be thought of as a set of
permission slips. The initial value is the number
of permission slips, signal() adds a
permission slip, and wait() (once it is
unblocked) takes a permission slip. Again, this
is all done atomically.

Keep in mind that semphores are implemented
using condition variables, so anything a
semaphore does can also be done using only
condition variables (but shouldn’t be!).

Semaphore commands:

● semaphore sem(int value);
● sem.signal();
● sem.wait();

Just like with mutexes (mutices? this seems to
be a point of contention on stack overflow...) be
sure to signal() before going out of scope,
because signaling is not the default behavior.

Example
The Avengers need to fight Thanos! They need to take away all 5 infinity stones
to win, but only 3 of them can attack Thanos at any given time (this entails
sleeping and with some probability removing an infinity stone)! How can we
handle this?

Example
numInfinityStones = 5;

int main(int argc, char* argv[]) {
thread avengers[kNumAvengers];
for (int i = 0; i < kNumAvengers; i++) {

thread(fightThanos, i);
}
for (thread avenger : avengers) {

avenger.join();
}
if (numInfinityStones == 0) {

cout << oslock << “Hooray, the Avengers have defeated Thanos!” << endl << osunlock;
} else {

cout << oslock << “Yep, the Universe has been destroyed..." << endl << osunlock;
}

}

Example
void fightThanos(int i) {

//SOMEHOW WE CAN ONLY HAVE 3 MOVE ON AT A TIME:
sleep_for(rand() % i * 100);
if (rand() % i == 0) numInfinityStones--;

}

Example
static semaphore attackPermission(3);

void fightThanos(int i) {
attackPermission.wait();
sleep_for(rand() % i * 100);
if (rand() % i == 0) numInfinityStones--;
attackPermission.signal();

}

Example
static semaphore attackPermission(3);
static mutex infinityStoneLock;

void fightThanos(int i) {
attackPermission.wait();
sleep_for(rand() % i * 100);
if (rand() % i == 0) {

lock_guard<mutex> lg(infinityStoneLock);
numInfinityStones--;

} //lg goes out of scope here, infinityStoneLock is released.
attackPermission.signal();

}

Threads Processes

Threads
● Thread.join() //wait for a

thread to finish
● ?

Processes

Threads
● Thread.join() ● waitpid()

Processes

Threads
● Thread.join()
● cv.wait(pred) //block until

some notification that the
state may have changed

● waitpid()
● ?

Processes

Threads
● Thread.join()
● cv.wait(pred)

● waitpid()
● while (pred) {sigsuspend()}

Processes

Threads
● Thread.join();
● cv.wait(pred);
● m.lock(); //prevent other

threads from interrupting

● waitpid();
● while (pred) {sigsuspend();}
● ?

Processes

Threads
● Thread.join();
● cv.wait(pred);
● m.lock();

● waitpid();
● while (pred) {sigsuspend();}
● sigprocmask(SIG_BLOCK,...);

Processes

GOOD LUCK!
Any questions?

