Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) { Running thread:
numQueuedLock. lock() ;
workerl

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

Ready queue:
// Pop from queue, and do expensive processing e worker2

numQueued--;
’ e scheduler

cout << oslock << "Worker #" << id << ": popped from queue "
<< "(numQueued = " << numQueued << ")" << endl << osunlock;
numQueuedLock.unlock() ; Blocked set:

sleep_for(1500);

+
static void runScheduler() { numQueuedLlLock:

for (size_t i = 0; 1 < 10; 1i++) {
sleep_for (300);

lock_guard<mutex> 1lg(numQueuedLock) ;

numQueued++; numQueued:

cout << oslock << "Scheduler: added to queue (numQueued = " u ueu '
<< numQueued << ")" << endl << osunlock; 0
Cv.notif 1L();

queueCv.notify_all(); queuer:

} waiting threads:
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static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock () ;

worker1 acquires mutex
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static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock,

worker1 acquires mutex

Using condition variables

[&] () {return numQueued > 0});

Running thread:
workerl

Ready queue:
e worker2
e scheduler

Blocked set:

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:
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static void runWorker(size_t id) {
while (true) {

worker2 starts running

Using condition variables

Running thread:
worker?2

Ready queue:
e scheduler
e workerl

Blocked set:

numQueuedLock:

numQueued:
0]

queueCv:

waiting threads:
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Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock () ;

worker2 attempts to acquire the lock. It's already locked, so
worker2 gets moved to the blocked queue.
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Using condition variables

static void runWorker(size_t id) {
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numQueuedLock. lock() ;

worker2 attempts to acquire the lock. It's already locked, so
worker2 gets moved to the blocked set.

Running thread:
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Using condition variables

static void runScheduler() {
for (size_t i = 0; i < 10; i++) {

}

scheduler starts running

Running thread:
scheduler

Ready queue:
e workerl

Blocked set:
e worker2

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:
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Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {
sleep_for(300);

}

scheduler sleeps. It gets moved to the blocked set.

Running thread:
scheduler

Ready queue:
e workerl

Blocked set:
e worker2

numQueuedLock:

numQueued:
0
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waiting threads:
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Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {
sleep_for (300);

}

scheduler sleeps. It gets moved to the blocked set.

Running thread:
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Ready queue:

Blocked set:
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static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

Back in worker1...

Using condition variables

Running thread:
workerl

Ready queue:

Blocked set:
e worker?2
e scheduler

numQueuedLock:

numQueued:
0]

queueCv:

waiting threads:
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Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

worker1 calls cv.wait(). The predicate function returns false, so worker
atomically unlocks the mutex and goes to sleep. Unlocking the lock
places worker2 back on the ready queue.
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Blocked set:
e worker?2
e scheduler

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:
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Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

worker1 calls cv.wait(). The predicate function returns false, so worker
atomically unlocks the mutex and goes to sleep. Unlocking the lock
places worker2 back on the ready queue.

Running thread:

Ready queue:
e worker2

Blocked set:
e scheduler
e workerl

numQueuedLock:
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numQueued:
0

queueCv:

waiting threads:
- workerl
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Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock () ;

worker2 wakes back up and attempts to acquire the lock
again. This time, It succeeds.

Running thread:
worker?2

Ready queue:

Blocked set:
e scheduler
e workerl

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:
- workerl




Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

worker2 wakes back up and attempts to acquire the lock
again. This time, It succeeds.

Running thread:
worker?2

Ready queue:

Blocked set:
e scheduler
e workerl

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:
- workerl




Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

worker2 calls cv.wait(). The predicate function returns false,
so worker2 atomically unlocks the mutex and goes to sleep

Running thread:
worker?2

Ready queue:

Blocked set:
e scheduler
e workerl

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:
- workerl




Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

worker2 calls cv.wait(). The predicate function returns false,
so worker2 atomically unlocks the mutex and goes to sleep
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Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {
sleep_for (300);

}

scheduler wakes up from its sleep

Running thread:
scheduler

Ready queue:

Blocked set:
e workerl
e worker2

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:
- workerl
- worker2
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Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; 1i++) {
sleep_for (300);
lock_guard<mutex> lg(numQueuedLock) ;

scheduler acquires numQueuedlLock and increments
numQueued

Running thread:
scheduler

Ready queue:

Blocked set:
e workerl
e worker2

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:
- workerl
- worker2
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Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {
sleep_for (300);

lock_guard<mutex> 1lg(numQueuedLock) ;
numQueued++;

scheduler acquires numQueuedlLock and increments
numQueued

Running thread:
scheduler

Ready queue:

Blocked set:
e workerl
e worker2

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:
- workerl
- worker2
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Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; 1i++) {
sleep_for (300);
lock_guard<mutex> 1lg(numQueuedLock) ;

numQueued++;
cout << oslock << "Scheduler: added to queue (numQueued = "

<< numQueued << ")" << endl << osunlock;

scheduler acquires numQueuedlLock and increments
numQueued

Running thread:
scheduler

Ready queue:

Blocked set:
e workerl
e worker2

numQueuedLock:

numQueued:
1

queueCv:

waiting threads:
- workerl
- worker2
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Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; 1i++) {
sleep_for (300);
lock_guard<mutex> 1lg(numQueuedLock) ;

numQueued++;
cout << oslock << "Scheduler: added to queue (numQueued = "

<< numQueued << ")" << endl << osunlock;
queueCv.notify_all();

scheduler notifies waiting threads that something has been added
to the queue. Those threads are moved to the ready queue

Running thread:
scheduler

Ready queue:

Blocked set:
e workerl
e worker2
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Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; 1i++) {
sleep_for (300);
lock_guard<mutex> 1lg(numQueuedLock) ;

numQueued++;
cout << oslock << "Scheduler: added to queue (numQueued = "

<< numQueued << ")" << endl << osunlock;
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Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; 1i++) {
sleep_for (300);
lock_guard<mutex> 1lg(numQueuedLock) ;

numQueued++;
cout << oslock << "Scheduler: added to queue (numQueued = "
<< numQueued << ")" << endl << osunlock;

queueCv.notify_all();

At the bottom of the for loop, the lock_guard goes out of scope, so
the scheduler releases numQueuedlLock
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Ready queue:
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Blocked set:

numQueuedLock:

numQueued:
1

queueCv:

waiting threads:




Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {

}

At the bottom of the for loop, the lock_guard goes out of scope, so
the scheduler releases numQueuedlLock

Running thread:
scheduler

Ready queue:
e workerl
e worker2

Blocked set:

numQueuedLock:

‘i

numQueued:
1
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Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {
sleep_for(300);

}

The scheduler repeats the loop and goes back to sleep.

Running thread:
scheduler

Ready queue:
e workerl
e worker2

Blocked set:

numQueuedLock:

‘i

numQueued:
1

queueCv:

waiting threads:
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Using condition variables

static void runWorker(size_t id) {

while (true) { Running thread:
numQueuedLock. lock() ;
workerl

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

Ready queue:
e worker2

Blocked set:
e scheduler

numQueuedLock:

‘i

numQueued:
1

queueCv:

waiting threads:

worker1 is put back on the CPU. It re-acquires numQueuedlLock and calls the
predicate function again, which returns true, so queueCv.wait() returns.
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Using condition variables

static void runWorker(size_t id) {

while (true) { Running thread:
numQueuedLock. lock() ;
workerl

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

Ready queue:
e worker2

Blocked set:
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worker1 is put back on the CPU. It re-acquires numQueuedlLock and calls the
predicate function again, which returns true, so queueCv.wait() returns.
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Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

// Pop from queue, and do expensive processing
numQueued--;
cout << oslock << "Worker #" << 1dd << ": popped from queue "
<< "(numQueued = " << numQueued << ")" << endl << osunlock;
numQueuedLock.unlock() ;
sleep_for(1500);

worker1 decrements numQueued and unlocks the mutex, then goes to sleep.

Running thread:
workerl

Ready queue:
e worker2

Blocked set:
e scheduler

numQueuedLock:

numQueued:
1

queueCv:

waiting threads:
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Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

// Pop from queue, and do expensive processing
numQueued--;
cout << oslock << "Worker #" << id << ": popped from queue "
<< "(numQueued = " << numQueued << ")" << endl << osunlock;
numQueuedLock.unlock();
sleep_for(1500);

worker1 decrements numQueued and unlocks the mutex, then goes to sleep.

Running thread:
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Ready queue:

Blocked set:
e scheduler
e workerl

numQueuedLock:
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waiting threads:
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Using condition variables

static void runWorker(size_t id) {

while (true) { Running thread:
numQueuedLock. lock() ;
worker?2

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

Ready queue:

Blocked set:
e scheduler
e workerl

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:

worker?2 is put back on the CPU. It re-acquires numQueuedlLock and calls the
predicate function again. Sadly, the predicate returns false, so worker2 goes
back to sleep until the scheduler wakes up and engueues another item.
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Using condition variables

static void runWorker(size_t id) {

while (true) { Running thread:
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

Ready queue:

Blocked set:
e scheduler
. workerl
. worker2

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:
worker2
worker?2 is put back on the CPU. It re-acquires numQueuedlLock and calls the

predicate function again. Sadly, the predicate returns false, so worker2 goes
back to sleep until the scheduler wakes up and engueues another item.
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Semaphores

semaphore.signal():
e Adds a ball to the bucket

e Never blocks

semaphore.wait():
e [faballisinthe bucket, takes the ball and returns immediately

e |f no ball is in the bucket, waits until one is available, then takes

the ball and returns
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Now with semaphores

size_t numQueued = 0;
mutex numQueuedLock;
conditional_variable_any queueCv;

static void runWorker(size_t 1id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

// Pop from queue, and do expensive processing

numQueued--;

cout << oslock << "Worker #" << did << ": popped from queue."
<< endl << osunlock;

numQueuedLock.unlock();

sleep_for(1500);

}

static void runScheduler() {
for (size_t i = 0; 1 < 10; 1i++) {
sleep_for(300);
lock_guard<mutex> 1lg(numQueuedLock) ;
numQueued++;
queueCv.notify_all();
cout << oslock << "Scheduler: added to queue."
<< endl << osunlock;



Primitive thread pool (workers.cc)

Now with semaphores

semaphore sem;

static void runWorker(size_t 1id) {
while (true) {
sem.wait();

cout << oslock << "Worker #" << did << ": popped from queue."
<< endl << osunlock;

sleep_for(1500);

}

static void runScheduler() {
for (size_t i = 0; i < 10; +i++) {
sleep_for(300);
sem.signal();

cout << oslock << "Scheduler: added to queue."
<< endl << osunlock;



Semaphores and condition variables

e Anything you can do with a semaphore, you can
also do with a condition variable

e |[f you can build it using a semaphore, build it
using a semaphore.
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Ring buffer with semaphores

dataWritten: 0)
dataRead: © © © © © © © © 8




Ring buffer with semaphores

dataWritten: 1
dataRead: O 00000 060

1. write h



Ring buffer with semaphores

dataWritten: 2
dataRead: OO0 0 0 0 0 -6
h| e
A A
1. write h

2. write e



Ring buffer with semaphores

dataWritten: 3
dataRead: ® 0000 -+
h|lell
A A
1. write h

2. write e
3. write 1



Ring buffer with semaphores

dataWritten: 2
dataRead: © O 0 0 0 0 s

. write h
. write e
. write 1
. read h
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Ring buffer with semaphores

dataWritten: 1
dataRead: © © O 000 06 7

. write h
. write e
. write 1
. read h
. read e

o b W NP



Ring buffer with semaphores

dataWritten: 6
dataRead: © © 2

1. write h 7. write o
2. write e 8. write _
3. write 1L 9. write w
4. read h 10.write o
5. read e
6. write 1



Ring buffer with semaphores

dataWritten: 7
dataRead: o 1
LI l]|o
1. write 7. write o
2. write 8. write _
3. write 9. write w
4. read 10.write o
5. read ll.write r
6

. write




Ring buffer with semaphores

dataWritten: 8
dataRead: 0)
ri LI L] 1l]|o w | o
1. write h 7. write o
2. write e 8. write _
3. write 1 9. write w
4. read h 10.write o
5. read e ll.write r
6. write 1



Ring buffer with semaphores

At this point, reader could read 8 bytes. writer has to wait for dataRead to be signaled (i.e.
has to wait for the reader to read stuff before it overwrites more characters in the buffer)

dataWritten: 8
dataRead: 0)

1. write h 7. write o
2. write e 8. write _
3. write 1L 9. write w
4. read h 10.write o
5. read e ll.write r
6. write 1



Ring buffer with semaphores

dataWritten: 7
dataRead: 1
r| L 1| o w | o
A A
1. write h 7. write o
2. write e 8. write _
3. write 1 9. write w
4. read h 10.write o
5. read e ll.write r
6. write 1L 12.read 1



Ring buffer with semaphores

dataRead could be wait()ed twice, so the writer thread can write 2 more characters now

dataWritten: 6
dataRead: 2
r| L o) w | o
A A
1. write h 7. write o 13.read 1
2. write e 8. write _
3. write 1 9. write w
4. read h 10.write o
5. read e ll.write r
6. write 1L 12.read 1



Ring buffer with semaphores

dataWritten: 8
dataRead: 0)
riLid|!]|o W | o

1. write h 7. write o 13.read 1
2. write e 8. write _ 14.write d
3. write 1 9. write w 15.write !
4. read h 10.write o
5. read e ll.write r
6. write 1L 12.read 1



