Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) { Running thread:
numQueuedLock. lock() ;
workerl

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

Ready queue:
// Pop from queue, and do expensive processing e worker2

numQueued--;
’ e scheduler

cout << oslock << "Worker #" << id << ": popped from queue "
<< "(numQueued = " << numQueued << ")" << endl << osunlock;
numQueuedLock.unlock() ; Blocked set:

sleep_for(1500);

+
static void runScheduler() { numQueuedLlLock:

for (size_t i = 0; 1 < 10; 1i++) {
sleep_for (300);

lock_guard<mutex> 1lg(numQueuedLock) ;

numQueued++; numQueued:

cout << oslock << "Scheduler: added to queue (numQueued = " u ueu '
<< numQueued << ")" << endl << osunlock; 0
Cv.notif 1L();

queueCv.notify_all(); queuer:

} waiting threads:

Primitive thread pool (workers.cc)

static void runWorker(size_t id) {
while (true) {

Using condition variables

Running thread:
workerl

Ready queue:
e worker2
e scheduler

Blocked set:

numQueuedLock:

‘i

numQueued:
0]

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock () ;

worker1 acquires mutex

Using condition variables

Running thread:
workerl

Ready queue:
e worker2
e scheduler

Blocked set:

numQueuedLock:

‘i

numQueued:
0]

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock,

worker1 acquires mutex

Using condition variables

[&] () {return numQueued > 0});

Running thread:
workerl

Ready queue:
e worker2
e scheduler

Blocked set:

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

static void runWorker(size_t id) {
while (true) {

worker2 starts running

Using condition variables

Running thread:
worker?2

Ready queue:
e scheduler
e workerl

Blocked set:

numQueuedLock:

numQueued:
0]

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock () ;

worker2 attempts to acquire the lock. It's already locked, so
worker2 gets moved to the blocked queue.

Running thread:
worker?2

Ready queue:
e scheduler
e workerl

Blocked set:

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

worker2 attempts to acquire the lock. It's already locked, so
worker2 gets moved to the blocked set.

Running thread:
scheduler

Ready queue:
e workerl

Blocked set:
e worker2

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler() {
for (size_t i = 0; i < 10; i++) {

}

scheduler starts running

Running thread:
scheduler

Ready queue:
e workerl

Blocked set:
e worker2

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {
sleep_for(300);

}

scheduler sleeps. It gets moved to the blocked set.

Running thread:
scheduler

Ready queue:
e workerl

Blocked set:
e worker2

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {
sleep_for (300);

}

scheduler sleeps. It gets moved to the blocked set.

Running thread:
workerl

Ready queue:

Blocked set:
e worker?2
e scheduler

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

Back in worker1...

Using condition variables

Running thread:
workerl

Ready queue:

Blocked set:
e worker?2
e scheduler

numQueuedLock:

numQueued:
0]

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

worker1 calls cv.wait(). The predicate function returns false, so worker
atomically unlocks the mutex and goes to sleep. Unlocking the lock
places worker2 back on the ready queue.

Running thread:
workerl

Ready queue:

Blocked set:
e worker?2
e scheduler

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

worker1 calls cv.wait(). The predicate function returns false, so worker
atomically unlocks the mutex and goes to sleep. Unlocking the lock
places worker2 back on the ready queue.

Running thread:

Ready queue:
e worker2

Blocked set:
e scheduler
e workerl

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:
- workerl

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock () ;

worker2 wakes back up and attempts to acquire the lock
again. This time, It succeeds.

Running thread:
worker?2

Ready queue:

Blocked set:
e scheduler
e workerl

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:
- workerl

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

worker2 wakes back up and attempts to acquire the lock
again. This time, It succeeds.

Running thread:
worker?2

Ready queue:

Blocked set:
e scheduler
e workerl

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:
- workerl

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

worker2 calls cv.wait(). The predicate function returns false,
so worker2 atomically unlocks the mutex and goes to sleep

Running thread:
worker?2

Ready queue:

Blocked set:
e scheduler
e workerl

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:
- workerl

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

worker2 calls cv.wait(). The predicate function returns false,
so worker2 atomically unlocks the mutex and goes to sleep

Running thread:

Ready queue:

Blocked set:
e scheduler
. workerl
. worker2

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:
- workerl
- worker2

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {
sleep_for (300);

}

scheduler wakes up from its sleep

Running thread:
scheduler

Ready queue:

Blocked set:
e workerl
e worker2

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:
- workerl
- worker2

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; 1i++) {
sleep_for (300);
lock_guard<mutex> lg(numQueuedLock) ;

scheduler acquires numQueuedlLock and increments
numQueued

Running thread:
scheduler

Ready queue:

Blocked set:
e workerl
e worker2

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:
- workerl
- worker2

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {
sleep_for (300);

lock_guard<mutex> 1lg(numQueuedLock) ;
numQueued++;

scheduler acquires numQueuedlLock and increments
numQueued

Running thread:
scheduler

Ready queue:

Blocked set:
e workerl
e worker2

numQueuedLock:

numQueued:
0

queueCv:

waiting threads:
- workerl
- worker2

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; 1i++) {
sleep_for (300);
lock_guard<mutex> 1lg(numQueuedLock) ;

numQueued++;
cout << oslock << "Scheduler: added to queue (numQueued = "

<< numQueued << ")" << endl << osunlock;

scheduler acquires numQueuedlLock and increments
numQueued

Running thread:
scheduler

Ready queue:

Blocked set:
e workerl
e worker2

numQueuedLock:

numQueued:
1

queueCv:

waiting threads:
- workerl
- worker2

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; 1i++) {
sleep_for (300);
lock_guard<mutex> 1lg(numQueuedLock) ;

numQueued++;
cout << oslock << "Scheduler: added to queue (numQueued = "

<< numQueued << ")" << endl << osunlock;
queueCv.notify_all();

scheduler notifies waiting threads that something has been added
to the queue. Those threads are moved to the ready queue

Running thread:
scheduler

Ready queue:

Blocked set:
e workerl
e worker2

numQueuedLock:

numQueued:
1

queueCv:

waiting threads:
- workerl
- worker2

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; 1i++) {
sleep_for (300);
lock_guard<mutex> 1lg(numQueuedLock) ;

numQueued++;
cout << oslock << "Scheduler: added to queue (numQueued = "

<< numQueued << ")" << endl << osunlock;
queueCv.notify_all();

scheduler notifies waiting threads that something has been added
to the queue. Those threads are moved to the ready queue

Running thread:
scheduler

Ready queue:
e workerl

e worker?2

Blocked set:

numQueuedLock:

numQueued:
1

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; 1i++) {
sleep_for (300);
lock_guard<mutex> 1lg(numQueuedLock) ;

numQueued++;
cout << oslock << "Scheduler: added to queue (numQueued = "
<< numQueued << ")" << endl << osunlock;

queueCv.notify_all();

At the bottom of the for loop, the lock_guard goes out of scope, so
the scheduler releases numQueuedlLock

Running thread:
scheduler

Ready queue:
e workerl

e worker?2

Blocked set:

numQueuedLock:

numQueued:
1

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {

}

At the bottom of the for loop, the lock_guard goes out of scope, so
the scheduler releases numQueuedlLock

Running thread:
scheduler

Ready queue:
e workerl
e worker2

Blocked set:

numQueuedLock:

‘i

numQueued:
1

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runScheduler () {
for (size_t i = 0; i < 10; i++) {
sleep_for(300);

}

The scheduler repeats the loop and goes back to sleep.

Running thread:
scheduler

Ready queue:
e workerl
e worker2

Blocked set:

numQueuedLock:

‘i

numQueued:
1

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {

while (true) { Running thread:
numQueuedLock. lock() ;
workerl

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

Ready queue:
e worker2

Blocked set:
e scheduler

numQueuedLock:

‘i

numQueued:
1

queueCv:

waiting threads:

worker1 is put back on the CPU. It re-acquires numQueuedlLock and calls the
predicate function again, which returns true, so queueCv.wait() returns.

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {

while (true) { Running thread:
numQueuedLock. lock() ;
workerl

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

Ready queue:
e worker2

Blocked set:
e scheduler

numQueuedLock:

numQueued:
1

queueCv:

waiting threads:

worker1 is put back on the CPU. It re-acquires numQueuedlLock and calls the
predicate function again, which returns true, so queueCv.wait() returns.

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

// Pop from queue, and do expensive processing
numQueued--;
cout << oslock << "Worker #" << 1dd << ": popped from queue "
<< "(numQueued = " << numQueued << ")" << endl << osunlock;
numQueuedLock.unlock() ;
sleep_for(1500);

worker1 decrements numQueued and unlocks the mutex, then goes to sleep.

Running thread:
workerl

Ready queue:
e worker2

Blocked set:
e scheduler

numQueuedLock:

numQueued:
1

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

// Pop from queue, and do expensive processing
numQueued--;
cout << oslock << "Worker #" << id << ": popped from queue "
<< "(numQueued = " << numQueued << ")" << endl << osunlock;
numQueuedLock.unlock();
sleep_for(1500);

worker1 decrements numQueued and unlocks the mutex, then goes to sleep.

Running thread:
worker?2

Ready queue:

Blocked set:
e scheduler
e workerl

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {

while (true) { Running thread:
numQueuedLock. lock() ;
worker?2

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

Ready queue:

Blocked set:
e scheduler
e workerl

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:

worker?2 is put back on the CPU. It re-acquires numQueuedlLock and calls the
predicate function again. Sadly, the predicate returns false, so worker2 goes
back to sleep until the scheduler wakes up and engueues another item.

Primitive thread pool (workers.cc)

Using condition variables

static void runWorker(size_t id) {

while (true) { Running thread:
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

Ready queue:

Blocked set:
e scheduler
. workerl
. worker2

numQueuedLock:

‘i

numQueued:
0

queueCv:

waiting threads:
worker2
worker?2 is put back on the CPU. It re-acquires numQueuedlLock and calls the

predicate function again. Sadly, the predicate returns false, so worker2 goes
back to sleep until the scheduler wakes up and engueues another item.

Like a bucket of balls

thread1

Like a bucket of balls

/

thread1

semaphore.walit()

Like a bucket of balls

thread1

semaphore.walit()

Like a bucket of balls

/\

thread1 (blocked)

semaphore.wait() (again)

Like a bucket of balls

°o/\

thread1 (blocked) thread?2

Like a bucket of balls

°o/\

thread1 (blocked) thread?2

semaphore.signal()

Like a bucket of balls

°o/\

thread1 (blocked) thread?2

semaphore.signal()

Like a bucket of balls

o/

thread1 thread?

semaphore.signal()

Like a bucket of balls

/ ® AN
®o/\ /\
thread1 thread?2

semaphore.signal()

Semaphores

semaphore.signal():
e Adds a ball to the bucket

e Never blocks

semaphore.wait():
e [faballisinthe bucket, takes the ball and returns immediately

e |f no ball is in the bucket, waits until one is available, then takes

the ball and returns

Primitive thread pool (workers.cc)

Now with semaphores

size_t numQueued = 0;
mutex numQueuedLock;
conditional_variable_any queueCv;

static void runWorker(size_t 1id) {
while (true) {
numQueuedLock. lock() ;

queueCv.wait(numQueuedLock, [&](){return numQueued > 0});

// Pop from queue, and do expensive processing

numQueued--;

cout << oslock << "Worker #" << did << ": popped from queue."
<< endl << osunlock;

numQueuedLock.unlock();

sleep_for(1500);

}

static void runScheduler() {
for (size_t i = 0; 1 < 10; 1i++) {
sleep_for(300);
lock_guard<mutex> 1lg(numQueuedLock) ;
numQueued++;
queueCv.notify_all();
cout << oslock << "Scheduler: added to queue."
<< endl << osunlock;

Primitive thread pool (workers.cc)

Now with semaphores

semaphore sem;

static void runWorker(size_t 1id) {
while (true) {
sem.wait();

cout << oslock << "Worker #" << did << ": popped from queue."
<< endl << osunlock;

sleep_for(1500);

}

static void runScheduler() {
for (size_t i = 0; i < 10; +i++) {
sleep_for(300);
sem.signal();

cout << oslock << "Scheduler: added to queue."
<< endl << osunlock;

Semaphores and condition variables

e Anything you can do with a semaphore, you can
also do with a condition variable

e |[f you can build it using a semaphore, build it
using a semaphore.

Ring buffer with semaphores

Ring buffer with semaphores

Ring buffer with semaphores

Ring buffer with semaphores

Ring buffer with semaphores

Ring buffer with semaphores

dataWritten: 0)
dataRead: © © © © © © © © 8

Ring buffer with semaphores

dataWritten: 1
dataRead: O 00000 060

1. write h

Ring buffer with semaphores

dataWritten: 2
dataRead: OO0 0 0 0 0 -6
h| e
A A
1. write h

2. write e

Ring buffer with semaphores

dataWritten: 3
dataRead: ® 0000 -+
h|lell
A A
1. write h

2. write e
3. write 1

Ring buffer with semaphores

dataWritten: 2
dataRead: © O 0 0 0 0 s

. write h
. write e
. write 1
. read h

 WDN K

Ring buffer with semaphores

dataWritten: 1
dataRead: © © O 000 06 7

. write h
. write e
. write 1
. read h
. read e

o b W NP

Ring buffer with semaphores

dataWritten: 6
dataRead: © © 2

1. write h 7. write o
2. write e 8. write _
3. write 1L 9. write w
4. read h 10.write o
5. read e
6. write 1

Ring buffer with semaphores

dataWritten: 7
dataRead: o 1
LI l]|o
1. write 7. write o
2. write 8. write _
3. write 9. write w
4. read 10.write o
5. read ll.write r
6

. write

Ring buffer with semaphores

dataWritten: 8
dataRead: 0)
ri LI L] 1l]|o w | o
1. write h 7. write o
2. write e 8. write _
3. write 1 9. write w
4. read h 10.write o
5. read e ll.write r
6. write 1

Ring buffer with semaphores

At this point, reader could read 8 bytes. writer has to wait for dataRead to be signaled (i.e.
has to wait for the reader to read stuff before it overwrites more characters in the buffer)

dataWritten: 8
dataRead: 0)

1. write h 7. write o
2. write e 8. write _
3. write 1L 9. write w
4. read h 10.write o
5. read e ll.write r
6. write 1

Ring buffer with semaphores

dataWritten: 7
dataRead: 1
r| L 1| o w | o
A A
1. write h 7. write o
2. write e 8. write _
3. write 1 9. write w
4. read h 10.write o
5. read e ll.write r
6. write 1L 12.read 1

Ring buffer with semaphores

dataRead could be wait()ed twice, so the writer thread can write 2 more characters now

dataWritten: 6
dataRead: 2
r| L o) w | o
A A
1. write h 7. write o 13.read 1
2. write e 8. write _
3. write 1 9. write w
4. read h 10.write o
5. read e ll.write r
6. write 1L 12.read 1

Ring buffer with semaphores

dataWritten: 8
dataRead: 0)
riLid|!]|o W | o

1. write h 7. write o 13.read 1
2. write e 8. write _ 14.write d
3. write 1 9. write w 15.write !
4. read h 10.write o
5. read e ll.write r
6. write 1L 12.read 1

