

CS110 Practice Midterm 4

Problem 1: findexec [16 points]

Implement the findexec function, which has the following prototype:

void findexec(char *root, char *pattern, char *command[]);

This findexec function runs two sister processes—the first running find and a second running
xargs—such that the standard output of the first leads to the standard input of the second. The
root and pattern parameters shape how the first process does its job, and command is a
NULL-terminated vector of arguments that shape how the second process does its job. Restated,
the root, pattern, and command parameters prompt findexec to do the same thing that the
following command would have achieved in stsh:

stsh> find root -name pattern -print | xargs command

Your implementation must do the following:

• construct the argument vector for the first process to include the supplied root and
pattern variables

• construct the argument vector for the second process where "xargs" has been
prepended to the series of tokens residing within command

• create two new sister processes such that the standout output of the first is wired to the
standard input of the second

• transform the first to execute find, and the second to execute xargs
• close all unused file descriptors
• wait for each of the two processes to finish before returning

You may assume all system calls work as intended and need not do any error checking at all.
You may not use pipeline or subprocess from lecture or the assignment set. In fact, I
basically want you to re-implement something akin to Assignment 3’s pipeline, but specific to
find and xargs. Note that we’re not asking you to implement find or xargs, as we’ve
already implemented our own versions of them in lecture and in discussion section.

 2

Problem 1: findexec [continued]

size_t countTokens(const char *command[]) {
 size_t count;
 for (count = 0; command[count] != NULL; count++) {}
 return count;
}

void findexec(char *root, char *pattern, char *command[]) {

Problem 2: Short Answer Questions [14 points]

Unless otherwise noted, your answers to the following questions should be 75 words or fewer.
You needn’t write in complete sentences provided it’s clear what you’re saying. Full credit will
only be given to the best of responses. Just because everything you write is true doesn’t mean
you get all the points.

a. [2 points] remove is a C library function that removes a name from the file system. If the

supplied name was the last one to identify the file, then the file itself is truly deleted and its
resources donated back for reuse. In the context of your assign2 filesystem design, explain
how the file system would need to be updated to fully realize a call to remove.

b. [2 points] Recall that the struct inode from assign2 looked like this:

struct inode { // some fields irrelevant to the problem are omitted
 uint16_t i_mode; // bit vector of file type and permissions
 uint8_t i_size0; // most significant byte of size
 uint16_t i_size1; // lower two bytes of size
 uint16_t i_addr[8]; // device addresses constituting file
};

 One CS110 student once proposed the following idea: for files with sizes that are just slightly

larger than a perfect multiple of the block size (e.g. 1027, when the block size is 256), those
last few bytes (e.g. the last three bytes of a 1027-byte file) could be stored in the inode itself.
Describe how you would support this optimization so that entire blocks needn’t be allocated
just to store a few bytes of payload.

c. [2 points] Referring to your implementation of findexec in Problem 1, identify the one

close call that, if omitted, would prevent findexec from doing its job. Then explain why
that one close call is so crucial to everything working as expected.

 3

d. [2 points] Your implementations of farm and stsh each relied on signal handlers—farm
relied on a SIGCHLD handler to identify stopped processes, and stsh relied on a SIGCHLD
handler to identify processes that have stopped, exited, crashed, or exited normally. In fact,
farm could have been implemented just as easily without custom handlers, whereas stsh
really needed them. Explain why this is true.

e. [2 points] When establishing a new process group for a pipeline of two or more commands
(as with echo "abcdefgh" | ./conduit --count 4), your stsh implementation
needed to call setpgid in both the parent and in each of the children ("in order to avoid
some race conditions", as the handout stated it). Describe the race condition that could
cause problems if the first child didn’t call setpgid and instead just relied on the parent to
call it before moving on to the create the second child.

f. [2 points] Explain what the scheduler does when a program makes an otherwise valid call to
read at a time when no data is available. Further explain what the scheduler does so that
it’s informed when data does become available.

g. [2 points] Many students asked if one signal handler can be interrupted by a signal of a

different type. Describe a simple coding experiment you could run to list all the signals
capable of interrupting a SIGCHLD handler.

