
Principle of Computer Systems October 21st, 2015
CS110

CS110 Practice Midterm 1

Problem 1: Exceptional Control Flow Calisthenics

a.) Consider the following program:

static int counter = 0;
int main(int argc, char *argv[]) {
 for (int i = 0; i < 2; i++) {
 fork();
 counter++;
 printf("counter = %d\n", counter);
 }
 printf("counter = %d\n", counter);
 return 0;
}

Assume there are no errors (e.g. fork doesn’t fail) and that each printf call atomically
flushes its output in full to the console.

• How many times would the value of counter be printed?
• What’s the value of counter the very first time it’s printed?
• What’s the value of counter the very last time it’s printed?
• Describe one scheduling scenario where the values of counter printed by all of the

competing processes would not print out values in non-decreasing order.

b.) Consider the following program, which is a variation of a program I presented in lecture:

static pid_t pid; // necessarily global so handler1 has access to it
static int counter = 0;

static void handler1(int unused) {
 counter++;
 printf("counter = %d\n", counter);
 kill(pid, SIGUSR1);
}

static void handler2(int unused) {
 counter += 10;
 printf("counter = %d\n", counter);
 exit(0);
}

int main(int argc, char *argv[]) {
 signal(SIGUSR1, handler1);
 if ((pid = fork()) == 0) {
 signal(SIGUSR1, handler2);
 kill(getppid(), SIGUSR1);
 while (true) {}
 }

 2

 if (waitpid(-1, NULL, 0) > 0) {
 counter += 1000;
 printf("counter = %d\n", counter);
 }

 return 0;
}

Again, assume that each call to printf flushes its output to the console in full, and further
assume that none of the system calls fail in any unpredictable way (e.g. fork never fails, and
waitpid only returns -1 because there aren’t any child processes at the moment it decides on its
return value).

• What is the output of the above program?
• What are the two potential outputs of the above program if the while (true) loop is

completely eliminated? Describe how the two processes would need to be scheduled in
order for each of the two outputs to be presented.

• Now further assume the call to exit(0) has also been removed from the handler2
function . Are there any other potential program outputs? If not, explain why. If so, what
are they?

c.) Finally, consider the following program:

static int counter = 0;
static void handler(int sig) {
 counter++;
}

int main(int argc, char *argv[]) {
 signal(SIGCHLD, handler);
 for (int i = 0; i < 5; i ++){
 if (fork() == 0)
 exit(0);
 }

 while (waitpid(-1, NULL, 0) > 0);
 printf("counter = %d\n", counter);
 return 0;
}

Assume you know nothing of the fairness of the kernel’s scheduler—e.g. assume the schedule is
arbitrary about the order it chooses processes to run, that time slice durations might vary, and a
process could be given two time slices before another process gets any.

• Yes or No: Does the program publish the same value of counter every single time?
• If your answer to the previous question is yes, what is the single value printed every time?

If your answer to the previous question is no, list all of the possible values counter might
be at the moment it’s printed.

 3

• How do your answers to each of the above questions change if the third argument to the
one waitpid is WNOHANG instead of 0?

Problem 2: triplet

Leverage your multiprocessing skills to implement triplet, which has the following prototype:

static int triplet(char *one[], char *two[], char *three[]);

triplet creates three processes (executing NULL-terminated argument vectors one, two, and
three) and wires the standard output of the first to the standard input of the second, and both the
standard output and standard error of the second to the standard input of the third. triplet
should wait until all three processes exit, and should return the sum of the three return codes.
Assume all system calls succeed (and in particular, the execvp call needed never return), and
assume the executables expressed via one[0], two[0], and three[0] never crash. Your
implementation must close all unused descriptors, and it should not wait on any child processes
other than the three it creates.

static int triplet(char *one[], char *two[], char *three[]) {

Problem 3: Short Answers Questions

Your answers to the following questions should be 50 words or fewer. Responses longer than 50
words will receive 0 points. You needn’t write in complete sentences provided it’s clear what
you’re saying. Full credit will only be given to the best of responses. Just because everything you
write is technically true doesn’t mean you get all the points.

a. Consider the prototype for the link system call, which is as follows

 int link(const char *oldpath, const char *newpath);

A successful call to link updates the file system so the file identified by oldpath is also
identified by newpath. Once link returns, it’s impossible to tell which name was created
first. (To be clear, newpath isn’t just a symbolic link, since it could eventually be the only
name for the file.)

In the context of your assign1 file system design, briefly outline how link might be
implemented.

 4

b. The publish-to-all user program takes an arbitrary number of filenames as arguments and
attempts to publish the date and time (via the date executable that ships with all versions of
Unix and Linux). publish-to-all is built from the following source:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = {"date", NULL};
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

Someone with a fractured understanding of processes, descriptors, and file redirection might
expect the program to have printed something like this:

myth4> ./publish-to-all one two three four
Publishing date and time to file named "one".
Publishing date and time to file named "two".
Publishing date and time to file named "three".
Publishing date and time to file named "four".

However, that’s not what happens. What text is actually printed, and what do each of the four
files contain?

 5

c. Assume a.txt and b.txt are each 5 byte files. Consider the following:

static void consume(int fd) {
 char ch;
 read(fd, &ch, 1);
}

int main(int argc, char **argv) {
 int one = open("a.txt", O_RDONLY);
 int two = open("b.txt", O_RDONLY);
 consume(one);
 pid_t pid = fork();
 int three = pid == 0 ? one : dup(one);
 consume(two);
 consume(three);
 dup2(two, three);
 sleep(10);
 return 0;
}

When the above program is executed, it splits into two and each, with high probability, takes
10 seconds naps, more or less at the same time. In the space below, draw the state of the file
descriptor tables, file entry table, and vnode table while the two processes are within their
sleep(10) calls. If the final drawing depends on how the two processes are selected for
CPU time, then say so, and present any valid final drawing.

d. While implementing the farm program for assign2, you were expected to implement a
getAvailableWorker function to return the index of a self-halted worker record. My own
solution is presented here:

static sigset_t waitForAvailableWorker() {
 sigset_t existing, additions;
 sigemptyset(&additions);
 sigaddset(&additions, SIGCHLD);
 sigprocmask(SIG_BLOCK, &additions, &existing);
 while (numWorkersAvailable == 0) sigsuspend(&existing);
 return existing;
}

static size_t getAvailableWorker() {
 sigset_t existing = waitForAvailableWorker();
 size_t i;
 for (i = 0; !workers[i].available; i++);
 assert(i < workers.size());
 numWorkersAvailable--;
 workers[i].available = false;
 sigprocmask(SIG_SETMASK, &existing, NULL); // restore original block set
 return i;
}

• Had I accidentally passed in &additions to the sigsuspend call instead of

&existing, the farm could have deadlocked. Explain why.

 6

• Had I accidentally omitted the sigaddset call and not blocked SIGCHLD, farm
could have deadlocked. Explain how.

e. Your implementation of trace relied on ptrace’s ability to read system call arguments from
registers via the PTRACE_PEEKDATA command. When a system call argument was a C string,
you needed to rely on repeated calls to ptrace and the PTRACE_PEEKUSER option to pull in
characters, eight bytes at a time, until a zero byte was included. At that point, the entire
'\0'-terminated C string could be printed.

Was this more complicated than need be? If, after all, the argument register contains the base
address of a '\0'-terminated character array, why can’t you just << the char * to cout and
rely on cout to print the C string of interest?

f. For assign2, you were asked to implement the pipeline function, which accepts two
argument vectors and creates sister processes such that the standard output of the first fed the
standard input of the second.

In the name of simplicity, your pipeline implementation wasn’t expected to do any error
checking at all and could assume all system calls succeeded. However, a robust pipeline
implementation would handle all possible system call errors. Had I instead required you to
handle system call failure and all possible errno values, how could you have used ptrace
to implement a test framework that confirm that pipeline gracefully fails when its second
fork call fails with errno EAGAIN (i.e. the number of available user processes would be
exceeded)?

Hint: recall ptrace’s ability to read and even modify another process’s registers;
PTRACE_PEEKUSER allows you to read another process’s registers, and PTRACE_POKEUSER
allows you to change one!

g. Your implementation of stsh—your tiny shell assignment—relied on custom signal handlers
to intercept and forward SIGINT and SIGTSTP signals on to the foreground process group
(a.k.a. job), and it did so by passing the negative of the job’s group id, or pgid, to the kill
system call (e.g. kill(-pgid, SIGINT)). Some students also updated the job list within the
handler to mark the job as kTerminated or kStopped, but the decision to do that was
incorrect. Why?

 7

h. When I type the following line in at the command prompt on a myth machine, I create a
background job with five processes.

myth15> echo abcd | ./conduit --delay 2 | ./conduit | ./conduit | ./conduit &
[1] 10004 10005 10006 10007 10008

The echo process, which immediately prints and flushes abcd to the standard input of the first
conduit process in the pipeline, has a process id of 10004. The first conduit process—the
one fed by echo—has a process id of 10005, the second has a process id of 10006, and so
forth. (Recall that assign3’s conduit simply passes everything read from standard input on
to standard output, although the --delay flag specifies the number of seconds that should
pass before the next single character is read and printed.)

• How would each of the four conduit processes terminate if I send a SIGKILL (the
kill-program signal that can’t be blocked or handled) to pid 10005 five seconds after
launching the job?

• How would each of the four conduit processes terminate if I instead send a SIGKILL
to pid 10007 five seconds after launching the job?

