
Principle of Computer Systems April 29th, 2015
CS110

CS110 Practice Midterm 1 Solution

Solution 1: Exceptional Control Flow Calisthenics

a.) Reference program:

static int counter = 0;
int main(int argc, char *argv[]) {
 for (int i = 0; i < 2; i++) {
 fork();
 counter++;
 printf("counter = %d\n", counter);
 }
 printf("counter = %d\n", counter);
 return 0;
}

• How many times would the value of counter be printed?

Answer: 10 times

• What’s the value of counter the very first time it’s printed?

Answer: counter = 1

• What’s the value of counter the very last time it’s printed?

Answer: counter = 2

• Describe one scheduling scenario where the values of counter printed by all of the

competing processes would not print out values in non-decreasing order.

In principle, the parent process could run to completion before any of the forked
child processes execute. If that were the case, then the first three lines of the output
would be:

counter = 1
counter = 2
counter = 2

The first child process (spawned by the original) might finally get processor time,
return from fork and advance on to the counter++ line, which promotes its own
copy of the counter global from 0 (the value the parent’s counter was at the time
fork was called) to 1. It could then print the following:

 2

counter = 1

That’s enough to illustrate how some 2’s could precede some 1’s in the
accumulation of all four processes’ outputs.

b.) Reference program:

static pid_t pid; // necessarily global so handler1 has access to it
static int counter = 0;

static void handler1(int unused) {
 counter++;
 printf("counter = %d\n", counter);
 kill(pid, SIGUSR1);
}

static void handler2(int unused) {
 counter += 10;
 printf("counter = %d\n", counter);
 exit(0);
}

int main(int argc, char *argv[]) {
 signal(SIGUSR1, handler1);
 if ((pid = fork()) == 0) {
 signal(SIGUSR1, handler2);
 kill(getppid(), SIGUSR1);
 while (true) {}
 }

 if (waitpid(-1, NULL, 0) > 0) {
 counter += 1000;
 printf("counter = %d\n", counter);
 }

 return 0;
}

• What is the output of the above program?

The combination of blocking while (true) loops and exit calls imposes a linearity to
the way parent and child block and signal each other, so there’s only one possible
output:

 counter = 1
 counter = 10
 counter = 1001

 3

• What are the two potential outputs of the above program if the while (true) loop is
completely eliminated? Describe how the two processes would need to be scheduled
in order for each of the two outputs to be presented.

The output above (the 1-10-1001) output is still possible, because the child process
can be swapped out just after the kill(getppid(), SIGUSR1) call, and
effectively emulate the stall that came with the while (true) loop when it was
present.

However, since the while (true) loop really is gone, the child process could
complete and exit normally before the parent process—via its handler1 function—
has the opportunity to signal the child. That would mean handler2 wouldn’t even
execute, and in that case, we wouldn’t expect to see counter = 10. (Note that
the child process’s call to waitpid returns -1, since it itself has no grandchild
processes of its own).

Redux on possible outputs:

 counter = 1
 counter = 10
 counter = 1001

or

 counter = 1
 counter = 1001

• Now further assume the call to exit(0) has also been removed from the handler2

function . Are there any other potential program outputs? If not, explain why. If so,
what are they?

No other potential outputs, because:
o counter = 1 is still printed exactly once, just in the parent, before the parent

fires a SIGUSR1 signal at the child (which may or may not have run to
completion).

o counter = 10 is potentially printed if the child is still running at the time the
parent fires that SIGUSR1 signal at it. The 10 can only appear after the 1, and if
it appears, it must appear before the 1001.

o counter = 1001 is always printed last, after the child process exits. It’s
possible that the child existed at the time the parent signaled it to inspire
handler2 to print a 10, but that would happen before the 1001 is printed.

 4

o Note that the child process either prints nothing at all, or it prints a 10. The
child process can never print 1001, because its waitpid call would return -1
and circumvent the code capable of printing the 1001.

Don’t freak out by the level of detail I provided defending why there are only two
possible outputs, even after the while and exit lines have been removed. I wouldn’t
need anything as elaborate as what I’ve provided. I would just need some scientific
method defense that a 1 and a 1001 are always printed exactly once, and that a 10 is
potentially printed in between them.

c.) Relevant program:

static int counter = 0;
static void handler(int sig) {
 counter++;
}

int main(int argc, char *argv[]) {
 signal(SIGCHLD, handler);
 for (int i = 0; i < 5; i ++){
 if (fork() == 0)
 exit(0);
 }

 while (waitpid(-1, NULL, 0) > 0);
 printf("counter = %d\n", counter);
 return 0;
}

• Yes or No: Does the program publish the same value of counter every single time?

Answer: no way

• If your answer to the previous question is yes, what is the single value printed every

time? If your answer to the previous question is no, list all of the possible values
counter might be at the moment it’s printed.

The parent process blocks until all child processes have exited. How the five
children and the parent processes are scheduled, however, dramatically impacts
how many times handler executes.

As it turns out, values of 1, 2, 3, 4, and 5 are all possible.
o Why 5? Imagine that the five children are scheduled to make progress, but that

they complete (e.g. call exit(0)) far apart enough that handler executes to
completion before the next in the series of SIGCHLD signals is fired. This
would allow handler to be executed five times.

o Why 1? Imagine the scenario that where the parent process (which includes its
normal control flow and its handler function) gets swapped out after the final

 5

iteration of its for loop but before any of the child processes exit. Further
imagine that the parent doesn’t get any processor time whatsoever until all five
child processes have exited and collectively prompted the kernel to deliver five
SIGCHLD signals to the parent (which results in a single SIGCHLD bit being set
high). When the parent finally gets processor time after years of waiting, it
detects the high SIGCHLD bit, is forced to execute handler exactly one time
to respond to the signal, and returns to the normal control flow to finally move
beyond the (until then, blocking) waitpid call.

• How do your answers to each of the above questions change if the third argument to

the one waitpid is WNOHANG instead of 0?

o Now counter = 0 is possible too. Imagine the parent gets processor time
before any of the child processes get enough time to exit, and the parent makes
it to (the now non-blocking) waitpid call, which immediately returns a 0
(since all child processes are still running), moves past its while loop, and
then prints the state of its global variable counter, which has never been
incremented, since handler has never been called.

In practice, you might not see some of the extreme possibilities very often or even
at all. But that doesn’t mean that you shouldn’t care about what’s possible. You
might test on a single-core machine with one user and less then 50 competing
processes, where all processes are scheduled with equal priority. The same code
running on another system (64 cores? approximately 10000 processes?
experimental scheduling algorithms?) might bring out one of these extremes, so
you need to understand what’s possible, or else you can’t claim an expertise in
multiprocessing.

Note that you didn’t need to defend your numbers for this problem. But I figured
you wanted to know why the full range of possibilities are in fact possibilities, so I
just kept writing.

Solution 2: triplet

Leverage your multiprocessing skills to implement triplet, which has the following prototype:

static int triplet(char *one[], char *two[], char *three[]);

triplet creates three processes (executing NULL-terminated argument vectors one, two, and
three) and wires the standard output of the first to the standard input of the second, and both the
standard output and standard error of the second to the standard input of the third. triplet
should wait until all three processes exit, and should return the sum of the three return codes.
Assume all system calls succeed (and in particular, the execvp calls never return), and assume
the executables expressed via one[0], two[0], and three[0] never crash. Your

 6

implementation must close all unused descriptors, and it should not wait on any child processes
other than the three it creates.

static int triplet(char *one[], char *two[], char *three[]) {
 pid_t pids[3];
 int fds[4];
 pipe(fds);
 pids[0] = fork();
 if (pids[0] == 0) {
 close(fds[0]);
 dup2(fds[1], STDOUT_FILENO);
 close(fds[1]);
 execvp(one[0], one);
 }
 close(fds[1]);
 pipe(fds + 2);
 pids[1] = fork();
 if (pids[1] == 0) {
 close(fds[2]);
 dup2(fds[0], STDIN_FILENO);
 close(fds[0]);
 dup2(fds[3], STDOUT_FILENO);
 dup2(fds[3], STDERR_FILENO);
 close(fds[3]);
 execvp(two[0], two);
 }
 close(fds[0]);
 close(fds[3]);
 pids[2] = fork();
 if (pids[2] == 0) {
 dup2(fds[2], STDIN_FILENO);
 close(fds[2]);
 execvp(three[0], three);
 }
 close(fds[2]);
 int sum = 0;
 for (size_t i = 0; i < 3; i++) {
 int status;
 waitpid(pids[i], &status, 0);
 sum += WEXITSTATUS(status);
 }
 return sum;
}

 7

Solution 3: Short Answers Questions

Your answers to the following questions should be 50 words or fewer. Responses longer than 50
words will receive 0 points. You needn’t write in complete sentences provided it’s clear what
you’re saying. Full credit will only be given to the best of responses. Just because everything you
write is technically true doesn’t mean you get all the points.

a. Consider the prototype for the link system call, which is as follows:

 int link(const char *oldpath, const char *newpath);

A successful call to link updates the file system so the file identified by oldpath is also
identified by newpath. Once link returns, it’s impossible to tell which name was created
first. (To be clear, newpath isn’t just a symbolic link, since it could eventually be the only
name for the file.)

In the context of your assign1 file system design, briefly outline how link might be
implemented.

• Resolve oldpath to its inode number, append new dirent to sequence of

dirents in the directory where newpath belongs
• New dirent should contain name of file and same inumber
• Increment inode’s reference count

b. The publish-to-all user program takes an arbitrary number of filenames as arguments and

attempts to publish the date and time (via the date executable that ships with all versions of
Unix and Linux). publish-to-all is built from the following source:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = {"date", NULL};
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

Someone with a fractured understanding of processes, descriptors, and file redirection might
expect the program to have printed something like this:

myth4> ./publish-to-all one two three four
Publishing date and time to file named "one".

 8

Publishing date and time to file named "two".
Publishing date and time to file named "three".
Publishing date and time to file named "four".

However, that’s not what happens. What text is actually printed, and what do each of the four
files contain?

 Printed to console:
 myth4:/usr/class/cs110/staff/midterm> publish-to-all one two three four
 Publishing date and time to file named "one".

 Contents of one (similar for two and three, lines can be interchanged):
 Publishing date and time to file named "two".
 Fri Oct 28 10:14:14 PDT 2016

 Contents of four:
 Fri Oct 28 10:14:14 PDT 2016

 9

c. Assume a.txt and b.txt are each 5 byte files. Consider the following:

static void consume(int fd) {
 char ch;
 read(fd, &ch, 1);
}

int main(int argc, char **argv) {
 int one = open("a.txt", O_RDONLY);
 int two = open("b.txt", O_RDONLY);
 consume(one);
 pid_t pid = fork();
 int three = pid == 0 ? one : dup(one);
 consume(two);
 consume(three);
 dup2(two, three);
 sleep(10);
 return 0;
}

When the above program is executed, it splits into two and each, with high probability, takes
10 seconds naps, more or less at the same time. In the space below, draw the state of the file
descriptor tables, file entry table, and vnode table while the two processes are within their
sleep(10) calls. If the final drawing depends on how the two processes are selected for
CPU time, then say so, and present any valid final drawing.

unused

unused

unused a.txt
static file info

b.txt
static file info

unused cursor: 3
refcount: 1

unused unused

cursor: 2
refcount: 4

 10

d. While implementing the farm program for assign2, you were expected to implement a
getAvailableWorker function to return the index of a self-halted worker record. My own
solution is presented here:

static sigset_t waitForAvailableWorker() {
 sigset_t existing, additions;
 sigemptyset(&additions);
 sigaddset(&additions, SIGCHLD);
 sigprocmask(SIG_BLOCK, &additions, &existing);
 while (numWorkersAvailable == 0) sigsuspend(&existing);
 return existing;
}

static size_t getAvailableWorker() {
 sigset_t existing = waitForAvailableWorker();
 size_t i;
 for (i = 0; !workers[i].available; i++);
 assert(i < workers.size());
 numWorkersAvailable--;
 workers[i].available = false;
 sigprocmask(SIG_SETMASK, &existing, NULL); // restore original block set
 return i;
}

• Had I accidentally passed in &additions to the sigsuspend call instead of

&existing, the farm could have deadlocked. Explain why.

numWorkersAvailable == 0 could pass, sigsuspend forces farm to
deadlock, as only SIGCHLD signals are coming in, and they’re blocked.

• Had I accidentally omitted the sigaddset call and not blocked SIGCHLD, farm

could have deadlocked. Explain how.

numWorkersAvailable == 0 passes, farm swapped off CPU, all kNumCPUs
workers self-halt, all kNumCPUs SIGCHLDs handled by one SIGCHLD handler call,
farm descends into sigsuspend, no additional SIGCHLDs ever arrive to wake
farm up.

 11

e. Your implementation of trace relied on ptrace’s ability to read system call arguments from
registers via the PTRACE_PEEKDATA command. When a system call argument was a C string,
you needed to rely on repeated calls to ptrace and the PTRACE_PEEKUSER option to pull in
characters, eight bytes at a time, until a zero byte was included. At that point, the entire
'\0'-terminated C string could be printed.

Was this more complicated than need be? If, after all, the argument register contains the base
address of a '\0'-terminated character array, why can’t you just << the char * to cout and
rely on cout to print the C string of interest?

Register contains the address of a C string in tracee’s virtual address space, but
operator<<(ostream& os, const char *str) prints C string at address in tracer’s
virtual address space.

f. For assign2, you were asked to implement the pipeline function, which accepts two

argument vectors and creates sister processes such that the standard output of the first fed the
standard input of the second.

In the name of simplicity, your pipeline implementation wasn’t expected to do any error
checking at all and could assume all system calls succeeded. However, a robust pipeline
implementation would handle all possible system call errors. Had I instead required you to
handle system call failure and all possible errno values, how could you have used ptrace
to implement a test framework that ensures pipeline gracefully fails when its second fork
call fails with errno EAGAIN (i.e. the number of available user processes would be
exceeded)?

Hint: recall ptrace’s ability to read and even modify another process’s registers;
PTRACE_PEEKUSER allows you to read another process’s registers, and PTRACE_POKEUSER
allows you to change one!

Test could monitor system call activity as assign2‘s trace does, paying attention to exit
from second fork. When tracee is frozen on fork return, write -EAGAIN to RAX and
signal to continue.

 12

g. Your implementation of stsh—your tiny shell assignment—relied on custom signal handlers
to intercept and forward SIGINT and SIGTSTP signals on to the foreground process group
(a.k.a. job), and it did so by passing the negative of the job’s group id, or pgid, to the kill
system call (e.g. kill(-pgid, SIGINT)). Some students also updated the job list within the
handler to mark the job’s processes as kTerminated or kStopped, but the decision to do
that was incorrect. Why?

All processes in a job might have installed SIGINT and/or SIGTSTP handlers that allow
each process to continue without terminating or stopping.

h. When I type the following line in at the command prompt on a myth machine, I create a

background job with five processes.

myth15> echo abcd | ./conduit --delay 2 | ./conduit | ./conduit | ./conduit &
[1] 10004 10005 10006 10007 10008

The echo process, which immediately prints and flushes abcd to the standard input of the first
conduit process in the pipeline, has a process id of 10004. The first conduit process—the
one fed by echo—has a process id of 10005, the second has a process id of 10006, and so
forth. (Recall that assign3’s conduit simply passes everything read from standard input on
to standard output, although the --delay flag specifies the number of seconds that should
pass before the next single character is read and printed.)

• How would each of the four conduit processes terminate if I send a SIGKILL (the
kill-program signal that can’t be blocked or handled) to pid 10005 five seconds after
launching the job?

o first conduit would be killed
o all other conduits would exit gracefully

• How would each of the four conduit processes terminate if I instead send a SIGKILL

to pid 10007 five seconds after launching the job?

o first two conduit’s would exit via uncaught signal, that signal being a
SIGPIPE

o final conduit exits gracefully

