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Solution 1: SIGCALL and System Call Traces [Median was 8 out of 10] 
static pid_t pid = 0; 
static void handleSIGCALL(int sig) {  
  while (true) { 
    const char *name = getsyscall(pid); 
    if (name == NULL) return; 
    printf("%s\n", name); 
  } 
} 
 
int main(int argc, char *argv[]) { 
  signal(SIGCALL, handleSIGCALL); 
  pid = fork(); 
  if (pid == 0) { 
    int devnull = open("/dev/null", O_WRONLY);       
    dup2(devnull, STDOUT_FILENO); 
    dup2(devnull, STDERR_FILENO); 
    close(devnull); 
    execvp(argv[1], argv + 1); 
  } 
     
  int status; 
  waitpid(pid, &status, 0); 
  return WEXITSTATUS(status); 
} 

 

Problem 1 Criteria: 10 points 

• Calls fork and dispatches the child to execute the program to be traced: 1 point 
• Opens "/dev/null", and does so under the jurisdiction of the pid == 0 test: 1 point 
• Binds both STDOUT_FILENO and STDERR_FILENO to devnull’s resources: 1 point 
• Closes devnull to release the file descriptor: 1 point 
• Calls execvp in the correct place: 1 point 
• Calls execvp with the correct arguments: 1 point 
• Properly blocks on waitpid (in main, otherwise more complex than it needs to be: 1 

point 
• Returns the traced executable’s return value: 1 point 
• Includes a while (true) loop around repeated calls to getsyscall(pid), and 

breaks on NULL: 1 point 
• Prints out each system call name: 1 point 

 
There were other isolated deductions imposed for errors we couldn’t possibly have anticipated 
that just didn’t map to the criteria. 
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Solution 2: Multiprocessing Redux [Median was 4 out of 12] 

a. Consider the following program called conduit (this is the entire implementation): 
 
int main(int argc, char *argv[]) { 
  while (true) { 
    sleep(1); // sleep one second 
    int ch = fgetc(stdin); // pulls a single character from stdin 
    if (ch == -1) return 0; 
    putchar(ch); // presses the char ch to stdout 
    fflush(stdout); 
  } 
} 
 

When I type the following line in at the command prompt on a myth machine, I create a 
background job with five processes. 
 

myth15> echo abcdefghij | conduit | conduit | conduit | conduit & 
[1] 20686 20687 20688 20689 20690 

 
• [2 points] Assume I send a SIGTSTP to process id 20687 after two seconds.  What 

state will the other four processes be in 20 seconds later, assuming I don’t send any 
other signals? 

 
The echo process will have ended before that, and the others will still be running 
(e.g. they aren’t technically stopped in the SIGTSTP sense just because they’re 
blocked by an fgetc call).  Criteria: 2 points for the right answer, 0 points for the 
wrong answer. 
 

• [2 points] Assume I send a SIGTSTP to process id 20690 after two seconds.  What 
state will the other four processes be in 20 seconds later, assuming I don’t send any 
other signals? 

 
All four processes preceding the final one will have ended.  Criteria: 2 points for 
the right answer, 0 points for the wrong answer. 
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b. [4 points] Typically, each page of a process’s virtual address space maps to a page in 
physical memory that no other virtual address space maps to.  However, when two processes 
are running the same executable (e.g. you have two instances of emacs running,) some 
pages within each of the two processes’ virtual address spaces can map to the same exact 
pages in physical memory.   Name two segments (the heap is an example of a segment) of a 
processes’ virtual address spaces that might be backed by the same pages of physical 
memory, and briefly explain why it’s possible. 
 

Any read-only segment in a process’s virtual address space can be aliases to the same 
physical address space, because nothing can be changed behind the back of the same 
segment in another virtual address space: 2 points for recognizing this. 
 
Two examples: text (.text) segment, read-only global text (.rodata) segment: 1 point 
for each. (The shared library segment is also a legitimate answer.) 
 

c. [4 points] Recall that the stack frames for system calls are laid out in a different segment of 
memory than the stack frames of normal (i.e. user program) functions.  How are the stack 
frames for system calls set up, and how are the values passed to the system calls received 
when invoked from user functions? 

 
Parameters are transferred from user stack to kernel stack through registers: 2 points for 
recognizing this 
 

More detail: for x86-32, an integer identifying which system call is being invoked is 
placed in %eax, and additional arguments are placed in %ebx, %ecx, etc. 

 
The stack frames are set up by a trap handler, which is executed when the calling 
function executes a trap machine instruction (after populating the registers with the 
system call id and the relevant arguments.): 2 points for recognizing that some sort of 
signal is used to execute the system call. 
 

More detail: on x86-32, the trap machine instruction is int 0x80. 
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Solution 3: Concurrent and Evaluation [Median was 8 out of 10] 
static const size_t kPoolSize = 64; 
static ThreadPool pool(kPoolSize); 
static bool concurrentAnd(const vector<BoolExpression>& expressions) { 
  mutex m; 
  condition_variable_any cv; 
  size_t count(expressions.size()); 
  bool result = true; 
  for (size_t i = 0; i < expressions.size(); i++) { 
    pool.schedule([&, i]() { 
        bool b = expressions[i].evaluate(); 
        lock_guard<mutex> lg(m); 
        if (!b) result = false; 
        count--; 
        if (count == 0) cv.notify_one(); 
      }); 
  } 
   
  lock_guard<mutex> lg(m); 
  cv.wait(m, [&count]() { return count == 0; }); 
  return result; 
} 

 
Problem 3 Criteria: 10 points 

• Declares a bool that’s defaulted to true (or declares a vector<bool> with the expectation 
that all expression results are stored somewhere): 1 point 

• Declares the mutex needed to protect against race conditions: 1 point 
• Declares the condition_variable_any to manage communication that all expressions 

have been evaluated: 1 point 
• Shares everything by reference or by value (as needed) with the thunks: 1 point (if they go 

with an index variable like i, that needs to be shared by value.) 
• Calls the evaluate method without any kind of lockdown: 1 point 
• Properly uses the mutex to guard whatever it needs to guard (at the very least, it needs to 

guard something like count, but in the case of a solution like mine, it needs to guard 
result as well): 1 point 

• Properly constructs the condition that must be met before concurrentAnd can return: 1 
point 

• Properly acquires the lock on the condition—whatever it is—before calling wait: 1 point 
• Properly unlocks all mutexes: 1 point 
• Properly notifies the condition_variable_any when the condition is met: 1 point 
 
There were other isolated deductions imposed for errors we couldn’t possibly have anticipated 
that just didn’t map to the criteria. 
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Solution 4: Concurrency and Networking Redux [Median was 9 out of 18] 

Your answers to the following questions should be 50 words or less.  Responses longer than 50 
words will receive 0 points.  You needn’t write in complete sentences provided it’s clear what 
you’re saying.  Full credit will be given to clear, correct, complete, relevant responses. 
 
a. There are a very limited number of scenarios where busy waiting is a reasonable approach to 

guarding a critical region.  Briefly describe one such scenario in enough detail that someone 
just learning about threading and concurrency would understand why busy waiting might 
make more sense. 
 

• System must be multi-core and/or multi-processor, so that the thread holding the 
resource could release the resource while the busy waiting thread is spinning. 

• The second thread holding the resource is expected to hold it for a very, very short 
time (e.g. the resource should be freed up before the busy waiting thread’s processor 
quantum is over). 

 
Criteria: 2 points for saying one but not both, 3 points for saying both 

 
b. Explain why a line as simple as i++, where i is a simple int, might be thread-safe on some 

architectures but not thread-safe on others, even if the implementer fails to use concurrency 
directives like the mutex or the semaphore. 
 

On some architectures, i++ compiles to a single assembly code instruction when i is a 
global variable (e.g. x86, location of global is defined prior to execution.)  However, i++ 
might compile to three or more assembly code instructions (e.g. i is a C++ reference 
parameter aliasing another integer whose location is not known at load time.) Criteria: 1 
point for framing discussion in terms of atomicity, 3 points for providing clear examples 
as I do, 0 points otherwise. 

 
c. Briefly explain the primary advantage of using a lock_guard<mutex> over exposed calls 

to mutex::lock and mutex::unlock. 
 

The lock_guard constructor acquires a mutex lock, and the lock_guard destructor, 
which is called no matter how the surrounding scope ends, always calls unlock.  The 
lock_guard is ideal when there are multiple exit paths (early returns, throw exceptions, 
etc) and the mutex needs to be unlocked regardless.  Criteria: The above argument is the 
only one that really works for me, and that’s worth two points.  You can give 1 point if 
they argue it’s less code (technically true), but that doesn’t require CS110 knowledge. 
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d. When I updated createClientSocket for the http-proxy assignment, I replaced the 
call to gethostbyname with a call to gethostbyname_r, which has the following 
prototype: 
 
struct hostent { 
  char *h_name;       // real canonical host name 
  char **h_aliases;   // NULL-terminated list of host name aliases 
  int h_addrtype;     // result’s address type, typically AF_INET 
  int length;         // length of the addresses in bytes (typically 4, for IPv4) 
  char **h_addr_list  // NULL-terminated list of host’s IP addresses 
}; 
 
int gethostbyname_r(const char *name, struct hostent *ret,  
                    char *buf, size_t buflen, 
                    struct hostent **result, int *h_errnop); 

 
This second, reentrant version is thread-safe, because the client shares the location of a 
locally allocated struct hostent via argument 2 where the return value can be 
placed, thereby circumventing the caller’s dependence on shared, statically allocated, 
global data.  Note, however, that the client is expected to pass in a large character buffer 
(as with a locally declared char buffer[1 << 16]) and its size via arguments 3 and 
4 (e.g. buffer and sizeof(buffer)).  What specific purpose does this buffer serve? 

 
Memory for the arrays that extend from the locally allocated struct hostent must 
also be placed somewhere, and it can’t be globally allocated (else it’s not reentrant) or 
dynamically allocated (since there’s no expectation to free any memory).  Criteria: 1 
point for anything on par with some additional-temporary-space argument, and 3 
points for understanding that the space is for the arrays extending from the locally 
allocated struct hostent must be placed somewhere as well. 
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e. With Assignment 6, a worker establishes a new network connection to the server for 
every single message it sends.  Briefly describe how the implementation of your 
MapReduce worker and server would need to change if a single, open connection were 
maintained per worker for the lifetime of the map or reduce phases. 
 

The worker would open a single client connection to the server and leave it open 
until it’s notified by the server that there aren’t any more jobs.  The server would 
need to maintain a pool of threads—one for each worker—to concurrently manage 
the back-and-forth messaging with each.  Criteria: 1 point for the worker’s single 
connection, 2 points for the server’s ThreadPool of open client connection 
conversations, 3 points total. 

 
f. Your MapReduce server took the responsibility of actually spawning the workers via a 

combination of threading, calls to system, and the ssh user program.  This worked for 
our implementation because we had at most 8 workers at any one time.  In practice, 
MapReduce implementations manage thousands of workers across thousands of 
machines.  Why does our implementation not scale to the realm where there are 
thousands of workers instead of at most 32 (even if the myth cluster actually had 
thousands of machines)?  What changes can realistically be made to the implementation 
to deal with thousands of workers instead of just 32? 

 
The maximum number of processes per user is typically in the hundreds, and the 
number of threads per process is limited to the low hundreds. Criteria: 2 points 
 
One possibility: Connect to each of the workers on the default ssh port, and speak 
ssh protocol to launch worker processes.  Leave those connections open (a process 
can maintain tens of thousands of open connections) until it’s heard all workers have 
finished, then close all connections.  Criteria: 2 points for something solid, 1 point for 
something vague, 0 points otherwise. 

 


