
CS110 Handout 13

Spring 2014 June 10th, 2014

Spring 2014: CS110 Final Examination

This is a closed book, closed note, closed computer exam (although you are allowed to
use your two double-sided cheat sheets, of course.) You have 180 minutes to complete all
problems. You don’t need to #include any libraries, and you needn’t guard against any
errors unless specifically instructed to do so. Understand that the majority of points are
awarded for concepts taught in CS110. If you’re taking the exam remotely, you can call
me at 415-205-2242.

Good luck!

SUNet ID (username): __________________@stanford.edu

Last Name: __________________________________

First Name: __________________________________

I accept the letter and spirit of the honor code. I’ve neither given nor received aid on this exam.
I pledge to write more neatly than I ever have in my entire life.

 [signed] __

 Score Grader

1. Piped Processes [8] ______ ______

2. Multiprocessing Redux [12] ______ ______

3. Priority Locking [12] ______ ______

4. Concurrency and Networking Redux [18] ______ ______

Total [50] ______ ______

 2

Relevant Prototypes
// exceptional control flow and multiprocessing
pid_t fork();
pid_t waitpid(pid_t pid, int *status, int flags);
typedef void (*sighandler_t)(int sig);
sighandler_t signal(int signum, sighandler_t handler); // ignore retval
int pipe(int fd[]); // array should be of length 2, ignore retval
int dup2(int old, int new); // ignore retval
int execvp(const char *path, char *argv[]); // ignore retval
#define WIFEXITED(status) // macro
#define WEXITSTATUS(status) // macro

// thread
class thread {
public:
 thread(...); // first argument is thread routine, its args come afterwards
 void join();
};

class mutex {
public:
 mutex();
 void lock();
 void unlock();
};

class semaphore {
public:
 semaphore(int count = 0);
 void wait();
 void signal();
 void signal(on_thread_exit_t); // pass on_thread_exit constant
};

class condition_variable_any {
public:
 template <typename Mutex, typename Pred> void wait(Mutex& m, Pred pred);
 void notify_one();
 void notify_all();
};

 3

Problem 1: Piped Processes [8 points]

For this problem, you’re to implement the execute function, which takes two argument vectors
(e.g. full commands that have already been parsed and structured to be compatible with a call to
execvp) and executes both of them—each in its own child process, with the added feature that
the standard output of the first process is directly piped to the standard input of the second.
execute should also return true if and only if both processes exited normally with status code of
0.

So, given a working implementation of execute, the following program should output the words
within words.txt in sorted order:

int main(int argc, char *argv[]) {
 char *first[] = {"cat", "words.txt", NULL};
 char *second[] = {"sort", NULL};
 bool success = execute(first, second);
 printf("Things went well? %s\n", success ? "yes" : "no");
 return 0;
}

If words.txt contains the words to be or not to be (one word per line, in that order) then
the output of the above program would be:

be
be
not
or
to
to
Things went well? yes

Implementation details:

• You must use fork and execvp to spawn the two child processes. More specifically,
you may not use system, popen, subprocess, or any other Linux function that layers
on top of fork and execvp.

• You must use the pipe function to create linked file descriptors to enable the inter-
processes communication. (In essence, you’re trying to implement command line pipes,
as with cat words.txt | sort. This could easily have been required of the
Assignment 3: tiny shell specification.) Recall that after a call to pipe(fds), what’s
written to fds[1] is readable from fds[0].

• execute must wait for both child processes to finish, reap their resources, and then
return true if and only if both processes exited normally with exit status 0.

• You must close all unused file descriptors, so that the execution of any program calling
execute can still generate a clean valgrind report.

• You can omit all of the error checking that would normally be required of a robust
implementation.

Use the next page to present your implementation.

 4

Problem 1: Piped Processes [continued]
// convenience function for closing both ends of a pipe
static void closeBoth(int fds[]) {
 close(fds[0]);
 close(fds[1]);
}

static bool execute(char *first[], char *second[]) {

 5

Problem 2: Multiprocessing Redux [12 points]

Your answers to the following questions should be 50 words or less (about the length of this
paragraph.) Responses longer than 50 words will receive 0 points. You needn’t write in
complete sentences provided it’s clear what you’re saying. Full credit will be given to clear,
correct, relevant responses.

a. [3 points] The implementation of stsh relied on a SIGCHLD handler to update the job
list whenever a job terminated, stopped, or resumed. The installed SIGTSTP handler, on
the other hand, simply intercepted and forwarded SIGTSTP on to the foreground job.
Why not update the job list to reflect the job state change inside the implementation of
the SIGTSTP handler?

b. [3 points] Signals set to be caught by custom signal handlers will have default signal
handling behavior in the child process after execvp is called. Why can’t the child
process inherit the parent’s installed signal handlers instead?

 6

c. [3 points] Your shell can be configured so that a process dumps core—that is, generates a
data file named core—whenever it crashes (via SIGSEGV, for instance.) This core file
can be loaded into and analyzed within gdb to help identify where and why the program
is crashing. Assuming we can modify the program source code and recompile, how
might you programmatically cause a SIGSEGV and thus generate a core dump at a
specific point in the program while allowing the process to continue executing? (Your
answer might include a very short code snippet to make its point.)

d. [3 points] The fork system call creates a new process with an independent virtual
address space, where all memory segments of the parent process are copied. If, however,
a copy-on-write implementation strategy is adopted, then the physical memory backing
the new virtual address space needn’t actually be copied when the parent process is
forked. Virtual memory pages in both parent and child can map to the same physical
memory pages until one of them writes through to a page, and only then is the virtual
memory page in the child’s address space mapped to a different physical page. What
common use case of fork from class and from the assignments would support a copy-
on-write implementation strategy?

 7

Problem 3: Priority Locking [12 points]

When multiple threads try to acquire the lock on a traditional mutex, only one succeeds, and
all others block until the lock on the mutex is released. When the lock is released, any one of
the blocked threads may be chosen to acquire the lock next, because as far as the mutex is
concerned, all threads are equally worthy.

The p_mutex class operates much like a regular mutex, except that the lock on a p_mutex
may be acquired with or without privilege. If a p_mutex is unlocked, then a thread can acquire
the lock regardless of privilege. If a p_mutex is locked, then all other threads vying for the lock
are blocked until the lock is released. When the lock is finally released, privileged threads are
chosen from the blocked set before unprivileged ones are.

Here is the full interface for the p_mutex class:

class p_mutex {
 public:
 p_mutex();
 void lock(bool privileged = false);
 void unlock();

 private:
 mutex m;
 condition_variable_any cv;
 enum {
 unlocked, locked, locked_with_privilege
 } state;
 int num_privileged_waiting;
};

Note that the interface file is complete, and the private section of the class definition provides
all of the data members needed to fully implement the constructor and the two methods. To be
clear:

• The constructor constructs a p_mutex to be unlocked, with no waiting threads—
privileged or otherwise.

• The lock method attempts to acquire the lock on the p_mutex, and succeeds if no other
threads are waiting. Otherwise, it blocks, joining the set of other blocked threads. If
lock is called without arguments (or false is supplied), then it is considered an
unprivileged thread when it blocks, and won’t get the lock until all blocked, privileged
threads have acquired and released the lock. If lock is called with true and it blocks,
then it is placed among the set of privileged threads to be considered next when the lock
is released.

• unlock marks the p_mutex as unlocked, allowing some privileged thread (or if there
aren’t any, some unprivileged thread) to acquire the lock next.

• The implementation must be framed in terms of the private data members I’ve already
listed, and you may not add any others or introduce any global variables.

 8

Present your implementation of the constructor and the two public methods. You need not
worry about the destructor, and you needn’t do any error checking or otherwise confirm the
class is being used properly (e.g. don’t worry about the same thread calling lock twice in a row
before unlocking, don’t worry about unlock being called without a prior call to lock, etc.)

a) [1 point] Implement the constructor, which ensures that the p_mutex is configured to be

unlocked (just as a regular mutex would be configured to be unlocked by its own
constructor.)

b) [7 points] Present your implementation of the lock method.

c) [4 points] Present your implementation of the unlock method.

 9

Problem 4: Concurrency and Networking Redux [18 points]

Your answers to each of the following questions should be 50 words or less. Responses longer
than 50 words will receive 0 points. You needn’t write in complete sentences provided it’s clear
what you’re saying. Full credit will be given to clear, correct, on-point responses.

a. [3 points] My threading and concurrency lectures made a point to avoid busy waiting.

Explain why busy waiting is generally a bad idea.

b. [3 points] There are many reasons a thread or process might be moved from a running state
to a blocked state. List three of them.

 10

c. [4 points] Explain why the multithreaded version of your RSS News Feed Aggregator is so
much faster than the sequential version, and describe a type of application and computer
hardware configuration where the introduction of threading would actually hurt
performance.

d. [4 points] We interact with socket descriptors more or less the same way we interact with
traditional file descriptors. Identify one thing you can’t do with socket descriptors that you
can do with traditional file descriptors, and briefly explain why not.

 11

e. [4 points] In lecture, we presented three different siblings of the sockaddr record family

The first one is a generic socket address structure, the second is specific to traditional IPv4
addresses (e.g. 171.64.64.131), and the third is specific to IPv6 addresses (e.g.
4371:f0dd:1023:5::259), which aren’t in widespread use yet (at least not at Stanford).
The addresses of socket address structures like those above are cast to (struct sockaddr
*) when passed to all of the various socket-oriented system calls (e.g. accept, connect,
and so forth). How can these system calls tell what the true socket address record type really
is—after all, it needs to know how to populate it with data—if everything is expressed as a
generic struct sockaddr *?

struct sockaddr {
 short sa_family;
 char sa_data[14];
};

struct sockaddr_in {
 short sin_family;
 short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

struct sockaddr_in6 {
 u_int16_t sin6_family;
 u_int16_t sin6_port;
 // other fields
};

