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Solution 1: Piped Processes 

 
static bool execute(char *first[], char *second[]) { 
  int fds[2]; 
  pipe(fds); 
  pid_t pids[2]; 
 
  if ((pids[0] = fork()) == 0) { 
    dup2(fds[1], STDOUT_FILENO); // descriptor 1 publishes to write end of pipe 
    closeBoth(fds); // don’t need read end or old descriptor to write end 
    execvp(first[0], first); // gut process and inject new image 
  } 
   
  if ((pids[1] = fork()) == 0) { 
    dup2(fds[0], STDIN_FILENO); // descriptor 0 pulls from read end of pipe 
    closeBoth(fds); // don’t need write end or old descriptor to read end 
    execvp(second[0], second); // gut process and inject new image 
  } 
   
  closeBoth(fds); // close pipe at parent, only child processes needed it 
  int statuses[2]; 
   
  for (size_t i = 0; i < 2; i++) 
    waitpid(pids[i], &statuses[i], 0); 
 
  for (size_t i = 0; i < 2; i++) 
    if (!WIFEXITED(statuses[i]) || WEXITSTATUS(statuses[i]) != 0) 
      return false; 
   
  return true; // both succeeded 
} 
 

Problem 1 Criteria: 8 points 

• Properly declares an array of length 2 and populates it with two file descriptors via a call 
to pipe: 1 point 

• Properly calls fork twice to create copies of the original into which first[0] and 
second[0] can be installed: 1 point 

• Properly uses dup2 to remap the correct ends of the pipe to stdin and stdout: 1 point 
(don’t worry about argument order—I always forget as well) 

• Properly relies on execvp to cannibalize the process images to execute first[0] and 
second[0]: 1 point 

• Closes both ends of the original pipe in the child processes: 1 point 
• Closes both ends of the original pipe in the parent process: 1 point 
• Properly waits for the two child processes to finish: 1 point 
• Properly returns true if and only if both processes exit normally with status code of 0: 1 

point 
 



  2  

Solution 2: Multiprocessing Redux 

a. The implementation of stsh relied on a SIGCHLD handler to update the job list whenever a 
job terminated, stopped, or resumed.  The installed SIGTSTP handler, on the other hand, 
simply intercepted and forwarded SIGTSTP on to the foreground job.  Why not update the 
job list to reflect the job state change inside the implementation of the SIGTSTP handler? 
 

The foreground process may install a custom SIGTSTP handler and execute that without 
suspending, so a SIGCHLD is never (and shouldn’t be) issued. (Criteria: 3 points for 
correct answer, 1 point for something relevant but oblique/obscure, 0 points otherwise.) 
 

b. Signals set to be caught by custom signal handlers will have default signal handling behavior 
in the child process after execvp is called.  Why can’t the child process inherit the parent’s 
installed signal handlers instead? 

 
Because the machine code for the signal handlers exists in the parent’s text segment, not 
in the child’s.  Even if the text image of the child could be updated, you don’t want to 
support the injection of arbitrary code into another application—infinite security risk.  
(Image a shell that launches make with a SIGTSTP handler that, oh,  
executes rm -fr ~/*.  (Criteria: 3 points for correct answer, 1 point for something 
relevant but oblique/obscure, 0 points otherwise.) 

 
c. [3 points] Your shell can be configured so that a process dumps core—that is, generates a 

data file named core—whenever it crashes (via SIGSEGV, for instance.)  This core file can 
be loaded into and analyzed within gdb to help identify where and why the program is 
crashing.  Assuming we can modify the program source code and recompile, how might you 
programmatically cause a SIGSEGV and thus generate a core dump at a specific point in the 
program while allowing the process to continue executing?  (Your answer might include a 
very short code snippet to make its point.) 

 
Add the following line of code (or something equivalent) at the exact point where you 
want a core dump to be generated: 
 
 if (fork() == 0) { int *p = NULL; *p = 0; } 
 
(Criteria: 3 points for correct answer, 1 point for something way more complicated than 
necessary, 0 points otherwise.) 
 

d. [3 points] The fork system call creates a new process with an independent virtual address 
space, where all memory segments of the parent process are copied.  If, however, a copy-on-
write implementation strategy is adopted, then the physical memory backing the new virtual 
address space needn’t actually be copied when the process is forked.  Virtual memory pages 
in both parent and child can map to the same physical memory pages until one of them 
writes through to a page, and only then is the virtual memory page in the child’s address 
space mapped to a different physical page.  What common use case of fork from class and 
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from the assignments would support a copy-on-write implementation strategy? 
 

In practice, when fork is called to create a child process, execvp is called very, very 
soon.  We shouldn’t make a deep copy of mapped virtual address space when the virtual 
address space is within milliseconds of being cannibalized and repurposed with a new 
process image.  (Criteria: 3 points for correct answer, 1 point for something correct but 
obscure, 0 points otherwise.) 

 
Solution 3: Priority Locking 

a) [1 point] Implement the constructor, which ensures that the p_mutex is configured to be 
unlocked (just as a regular mutex would be configured to be unlocked by its own 
constructor.) 

 
 p_mutex::p_mutex(): state(unlocked), num_privileged_waiting(0) {} 

 
Problem 3a Criteria: 1 point 

• Properly initializes primitive data members: 1 point 
 
b) Present your implementation of the lock method.  You may use the top portion of the next 

page as well. 
 

void p_mutex::lock(bool privileged) { 
  lock_guard<mutex> lg(m); 
  if (privileged) { 
    num_privileged_waiting++; 
    cv.wait(m, [this]{ return state == unlocked; }); 
    state = locked_with_privilege; 
  } else { 
    cv.wait(m, [this] {  
      return state == unlocked && num_privileged_waiting == 0;  
    }); 
    state = locked; 
  } 
} 
 

or 
 
void p_mutex::lock(bool privileged) { 
  lock_guard<mutex> lg(m); 
  if (privileged) { 
    num_privileged_waiting++; 
    cv.wait(m, [this]{ return state == unlocked; }); 
    num_privileged_waiting--; 
  } else { 
    cv.wait(m, [this]{  
  return state == unlocked && num_privileged_waiting == 0;  
    }); 
  } 
  state = locked; 
} 
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Problem 3b Criteria: 7 points 

• Properly acquires m at beginning: 1 point 
• Properly releases m at end: 1 point 
• Properly dispatches between two scenarios, if needed: 1 point 
• Properly waits for correct condition to be satisfied: 2 points (1 point for each scenario) 
• Properly tracks number of privileged threads: 1 point 
• Properly updates state: 1 point 

 

c) And finally, present your implementation of the unlock method. 
 
void p_mutex::unlock() { 
  lock_guard<mutex> lg(m); 
  if (state == locked_with_privilege) num_privileged_waiting--; 
  state = unlocked; 
  cv.notify_all(); 
} 

 
or (alternatively, if second lock implementation above is used) 

 
void p_mutex::unlock() { 
  lock_guard<mutex> lg(m); 
  state = unlocked; 
  cv.notify_all(); 
} 

 
Problem 3c Criteria: 4 points 

• Properly acquires and releases m: 1 point 
• Properly updates state: 1 point 
• Properly demotes count on number of privileged threads: 1 point (note that it’s possible 

they did this in lock): 1 point 
• Properly calls notify_all (or, if they know only unprivileged threads are waiting, 

notify_one): 1 point 
 
Solution 4: Concurrency and Networking Redux 

a. My threading and concurrency lectures made a point to avoid busy waiting.  Explain why 
busy waiting is generally a bad idea. 

 
Busy waiting allows a thread to occupy the CPU when it has nothing meaningful to do.  
It’s better to block thread off the processor indefinitely until the thread manager is notified 
that the thread actually has a chance to do meaningful work.  (Criteria: 3 points for 
correct answer, 1 point for obscure answer or one with correct and incorrect information, 
0 for incorrect response.) 
 

b. There are many reasons a thread or process might be moved from a running state to a 
blocked state.  List three of them. 
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• Thread is blocked on a locked mutex, a condition that’s failing, or a semaphore 

value of 0.   
• Thread or process is blocked because it’s in a slow I/O system call (read, accept, 

etc.) 
• Thread or process is blocked because it’s waiting for a timer interrupt (as a result of a 

call to sleep or sleep_for) 
 

(Criteria: 1 point for each distinct reason provided.  Only read first three, and don’t give 
two points for same category, e.g. mutex and semaphore listed separately.) 

 
c. Explain why the multithreaded version of your RSS News Feed Aggregator is so much faster 

than the sequential version, and describe a type of application and computer hardware 
configuration where the introduction of threading would actually hurt performance. 
 

It’s faster because you overlay all of the dead times associated with the acquisition of 
multiple network connections.  An application that’s mostly or all CPU-bound (e.g. a 
local file tree crawl) that runs on a single-processor machine would not benefit from 
threading, since there same number of machine instructions need to be executed whether 
it’s within one thread or distributed across many. (Criteria: Solid answer to first question 
is worth 1 point, answer to second question is worth 2 points—all other nothing, based 
on quality.) 
 

d. We interact with socket descriptors more or less the same way we interact with traditional 
file descriptors.  Identify one thing you can’t do with socket descriptors that you can do with 
traditional file descriptors, and briefly explain why not. 

 
Socket descriptors are not seek-able (or informally, we can’t skip over bytes or rewind).  
This is because the bytes accessible through a socket aren’t permanently stored anywhere 
as they are with files.  (Criteria: 3 points for solid answer [might be different than mine], 
1 point for obscure answer, 0 points for one that’s incorrect.) 

 
e. In lecture, we presented three different siblings of the sockaddr record family 

 
The first one is a generic socket address structure, the second is specific to traditional IPv4 
addresses (e.g. 171.64.64.131), and the third is specific to IPv6 addresses (e.g. 
4371:f0dd:1023:5::259), which aren’t in widespread use yet (at least not at Stanford).  
The addresses of socket address structures like those above are cast to (struct sockaddr 
*) when passed to all of the various socket-oriented system calls (e.g. accept, connect, 

struct sockaddr {      
  short sa_family; 
  char sa_data[14];  
}; 

 

struct sockaddr_in {      
  short sin_family; 
  short sin_port; 
  struct in_addr sin_addr; 
  char sin_zero[8]; 
}; 

 

struct sockaddr_in6 {      
  u_int16_t sin6_family; 
  u_int16_t sin6_port; 
  // other fields 
}; 
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and so forth).  How can these system calls tell what the true socket address record type really 
is—after all, it needs to know how to populate it with data—if everything is expressed as a 
generic struct sockaddr *? 
 

The first field—the two-byte short under a variety of names—is examined with the 
expectation that it identifies the larger type around it. 
 
(Criteria: Give 3 points for correct answer, 1 point if they think the length-oriented 
argument identifies the type, and 0 points otherwise.) 

 
 
 
 


